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Appendix 1  
Brightness Correction Models

The need for image calibration is introduced in Volume 2A—Section 3 and is particularly important for multi-
date or multi-sensor image datasets (see Volume 2D). The general approach to image brightness variation 
is to ‘correct’ it in some way. Correction means changing a pixel spectrum so that it is what would have been 
measured if the Sun and sensor geometry were a fixed standard pair rather than a varying pair of angles over 
the image extent. As discussed later, this action may be valid as an average over a spatial area but can be a 
difficult concept at the scale of a single tree crown or soil clump.

2 Most text and equations in this appendix have been sourced from Jupp and Strahler (2000).

 
Background image: This 180º panorama near William Creek, SA, shows the hotspot effect around the focal point of the camera, caused by the predominant 
backscatter of vegetation. This image is shown here with vertical exaggeration (see also Volume 1B—Figure 3.22). Source: Andreas Hüni, University of Zurich 
(taken on iPhone6s)

We will outline three main approaches to scene 
brightness modelling and ‘correction’, namely:

 § empirical methods (see Appendix A1.1);

 § measurement modelling methods (see 
Appendix A1.2); and

 § semi-empirical methods (see Appendix A1.3)2.

A1.1 Empirical Methods
Empirical methods involve fitting the variation in 
general brightness ascribed to the atmosphere 
and Bidirectional Reflectance Distribution Function 
(BRDF) effects by a parametric function (using least 
squares or some other criterion) and then normalising 
by some combination of additive and multiplicative 
image transformation. The simplest methods involve 
fitting polynomials to average variations over scan 
lines or frames and subtracting or dividing out the 
general level to ‘flatten’ the data. These methods are 
well known and have been used with single frame 
photographs or scanner runs prior to other image 
processing operations.

For mosaics, brightness normalisation has a strict 
analogy with geometric mosaicking where images 
are geometrically matched to the ground by Ground 
Control Points (GCP) and to other images by tie 
points (see Volume 2B). At tie points, in geometric 
mosaicking, the constraint is that the same feature 
must be located at the same point in the geometric 
frame model. In the same way, in brightness 
normalisation, there may be targets in some frames 
of known reflectance. These are sometimes called 
‘invariant targets’. When their reflectance is only 
assumed from previous work they are sometimes 
called ‘pseudo-invariant’ targets. These are analogous

to GCP. In the overlap between frames, the analogy 
with tie points is patches or features that are assumed 
to have the same corrected spectra. For a given 
functional form of brightness model, the estimation 
reduces to a linear ‘bundle adjustment’.

The greatest problems with the simple empirical 
approach are image variance and heterogeneity. 
It is often extremely difficult to determine which 
components of the variation are atmospheric or BRDF 
brightening and which are differences in surface type. 
The high image spatial variance that is most obvious 
in high resolution images also makes fitting functions 
very difficult. Another problem is to decide which 
effects are additive and which are multiplicative. 
As long as the variation is not too great, the 
additive approximation is not too bad but when raw, 
uncalibrated data are used, the interaction between 
additive and multiplicative effects can be a problem.
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For example, calibration and atmospheric correction 
are linear effects but the atmospheric terms are 
angle dependent and vary with incident ( ) and 
view ( ) directions. That is, even if the surface 
were Lambertian (with a flat BRDF) the digital data 
recorded by a scanner in waveband j (dn

j
) will be 

related to the reflectance (  ) by:

hence

where

 is the radiance recorded in waveband j;
 is the Sun or ‘incident’ radiation direction;
 is the total irradiance at the target; and
 is the radiation scattered into the sensor from 
the atmosphere.

The brightness variation described here (which has 
no surface BRDF effect in that  is not dependent on 
Sun or view angles) obviously has both additive and 
multiplicative terms, which are complex functions of 
the incident and view angles. When the surface target 
itself has a strong BRDF effect the variability will 
compound.

In the face of this, the empirical methods are generally 
constrained to be of low order functional forms that 
still have the structure of the variation being fitted. 
In this way, it is hoped that variance and image 
heterogeneity are ‘orthogonal’ to the function being 
fitted. In addition, the fitting is best done in the 
physical framework of the brightness variation, that 
is, in terms of the phase angles between Sun and 
sensor view angle and between sensor view angle and 
the specular vector. There have been many functions 
of this type developed such as Walthall, Hapke, 
Roujean and others. These will be addressed below in 
Appendix A1.3.

For the purely empirical approach and for small 
frames such as occur with aerial photography and 
video data (or even single scanner runs) the main 
problem is scene heterogeneity. There will be scene 
variations that occur at spatial scales near to or 
greater than the image and it is very difficult to 
separate these effects from atmospheric and broad 
BRDF effects. To illustrate this you can consider an 
image to be roughly approximated by:

where

I
H
 is the high spatial frequency component;

I
L
 is the low frequency component; and

I
A
 is the angular brightness variation.

In many images, over the extent of a single frame, 
the low frequency and angular components are not 
in any way orthogonal. Hence it is near impossible to 
estimate the angular function from the single frame 
data. Moving to models based on view geometry and 
semi-empirical functions can help (Pickup et al., 1995) 
but essentially some way to bring in the wider spatial 
context is needed.

Among empirical methods are also ‘referencing’ 
methods. In the case of image digitising, a reference 
approach is to scan an image and scan a reference 
(white Lambertian) standard sheet with the same 
illumination. The image is then ‘normalised’ by 
subtracting or dividing the reference from the 
image to remove lighting based view angle effects. 
In reconnaissance image data this is not possible 
unless a large reference target were to exist and 
scene BRDF effects would still remain. Hick and Ong 
(Ong et al., 1995) have used a referencing method to 
extract brightness variations from video frames by 
referencing against the background of a Landsat TM 
image. It may be possible to fit empirical functions 
to the residual between the individual frame and 
the reference image. In this way, the problem of 
heterogeneity and correlated spatial frequencies 
described above could be reduced significantly.

It is worth mentioning here that as soon as the 
empirical methods extend from simple functional 
forms to ones involving image and Sun geometry, the 
processing methods start to become more costly. The 
cost is in extra work registering images and/or in extra 
costs associated with collecting attitude and position 
information (such as INS and GPS) for the platform. 
If the end result is worth this extra cost then it will be 
worth some extra modelling as discussed below.
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A1.2 Measurement Model Approach

A1.2.1 Atmospheric correction and 
reflectance normalisation
It would clearly be an advantage to model the 
atmospheric and BRDF effects by physical models 
and estimate the corrected image in terms of a 
normalised reflectance factor. The added value 
would be the link this gives to physical models of the 
relationship between Earth parameters of interest and 
the measured reflectance. Obviously, a reflectance is 
closer to a material property and therefore resolves 
the problem of monitoring.

If reference targets in the image have measured 
reflectance (that is, the invariant or pseudo-invariant 
targets) it is possible to get close to reflectance from 
the empirical approach. However, it will never be clear 
how much residual atmosphere and BDRF effect 
remains. Obviously, most natural targets that are 
chosen as ‘invariant’ will have some BRDF that may 
not be known and that effect will be folded into the 
final image data.

Assuming the data are accurately calibrated to 
radiances, there are different ways to describe the 
process of correction. One is as follows:

An equation relating the recorded radiance sensed at 
altitude h above the target to the target reflectance 
factor is:

where

 is the radiance observed by the 
instrument from altitude h, with look (or view) 
direction m

v
 and Sun direction m

s
 at wavelength l;

 is the beam transmittance through 
the layer between the surface and altitude h in 
direction m

v ;
 is the diffuse transmittance for a layer 

of thickness h and for initial beam direction m
v
;

 is the path radiance of light which 
did not interact with the surface; and

 is the glint term that is most 
significantly present over water-covered targets 
and is sometimes present over land targets.
 is the effective irradiance at the target, or 

 is the irradiance at the target for a ‘black’ 
earth;

s is the sky hemispherical albedo;
r* is the background earth albedo;
r

t
 is the target directional reflectance factor; and

 is the environmental reflectance 
due to the background albedo r* or 

If the atmosphere is characterised then it is possible 
to retrieve the directional reflectance factor (r

t 
) for 

each pixel. This term needs to be defined carefully as 
there are many different types of ‘reflectance’ used.

The directional reflectance factor (r
t
) as used here is 

defined as:

in which the irradiance ( ) is the sum of diffuse 
and direct terms and the fraction of diffuse (f

d
) is 

included as a parameter. The assumption that the 
irradiance can be characterised in this context by 
the Sun position and the fraction of diffuse radiation 
is one that needs evaluation. The value of using this 
form of reflectance is that it corresponds to what is 
measured in the field using an irradiance radiometer 
or a reference standard.

The physical approach depends on two steps. The 
first is to determine this reflectance factor for a 
surface by atmospheric correction. In atmospheric 
correction, the atmospheric terms are modelled 
and measured from image and ancillary data. The 
reflectance factor in an image may be obtained 
iteratively if the atmospheric turbidity makes the 
adjacency and other atmosphere/surface interactions 
significant. The second step is to normalise the 
reflectance factor in some way to account for its 
BRDF variation.

In order to go from the reflectance factor to such 
a corrected value, however, we effectively need to 
assume that:

where  is the angular variation function 
that is assumed to characterise the land surface type 
and be normalised to 1.0 at a reference pair of Sun 
and view angles and standard atmosphere. Then 
‘corrected’ data are reachable as:
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The value of getting to this point is that both  
and  can be interfaced with radiative 
transfer models to obtain parameters for the Earth’s 
surface by inversion. The inversion may be simple 
(such as end member methods) or sophisticated 
(such as complete nonlinear modelling).

This physical approach is obviously highly sophisticated 
but demands a level of data quality and time in value 
adding that sometimes cannot economically be 
committed. However, if the end products are of high 
information value and valued by the client it is clearly 
an approach that could be pursued.

A1.2.2 Analytic BRDF models
Assuming the atmospheric correction can be done 
(and the surface interaction needs to be flagged here 
as the coupling means the atmospheric correction 
and surface BRDF estimation are not independent) 
the surface BRDF can sometimes be defined by an 
analytic model.

The broad brightness variations in all EO images 
can be considered as the composite of the spectral 
properties of component materials combined with the 
structural effects that result in angular variations (see 
Volume 1B). Angular effects can be viewed in terms of 
three factors:

 § volume effect—which depends on surface 
structure;

 § occlusion (or hotspot) effect—shadow cast by the 
Sun occludes parts of the surface; and

 § specular (or glint) effect—when surface properties 
strongly reflect illumination, such as water glint 
(see Volume 2A—Section 3.2.1).

Among the many models for the Volume effect are the 
Suits (1972) and SAIL (Scattering by Arbitrary Inclined 
Leaves; Verhoef, 1984, 1985) models as well as more 
advanced ones such as the hotspot-based model 
described (as examples) in Qin and Jupp (1993) and 
Jupp and Strahler (1991). The field of Geo-optical 
modelling (GO Models) is now very extensive but not 
as well served in its entirety yet by any major books or 
fully inclusive reviews.

The models used for the Volume effect range from 
the plane parallel layer models (Suits, 1972; Verhoef, 
1984, 1985) to sophisticated three-dimensional 
ones such as the hotspot-based Geometric Optical-
Radiative Transfer (GORT) models (Li and Strahler, 
1995). Myneni and Ross (1990) provides a formative 
early overview with many of the original aspirations 
well presented. Liang et al. (2000) reviews the rapid 
progress during the following decade (see also Chen 
et al., 2000, and Qin and Liang, 2000). More recently, 
the Radiation Transfer Model Intercomparison (RAMI) 
experiment has provided a major influence for 
stabilizing model development and ensuring maturity 
(Pinty et al., 2004; Widlowski et al., 2007).

The hotspot effect is a geometric or occlusion effect. 
From among the many papers that describe the 
hotspot effect, Excursus A1.1 provides an overview 
of one implementation of Geometric-Optical (GO) 
models (extracted from Jupp and Walker, 1996). 
The GO model approach has been extended into 
models that combine geometric and radiative transfer 
components into effective and complete models for 
canopies. Other GO models include:

 § Nilson and Kuusk models (Nilson and Peterson, 
1991; Kuusk and Nilson, 2000; and Kuusk, 2001);

 § Chen and White models (Chen and Leblanc, 1997, 
2001; White et al., 2001, 2002; Chen et al., 2003, 
2005);

 § Lacaze and Roujean models (Roujean, 2000); 
Lacaze and Roujean, 2001);

 § Li, Strahler and Ni-Meister (GORT) models (Li and 
Strahler, 1995; Ni et al., 1997, 1999; Yang and Friedl 
(2003); and

 § Huemmrick and Goward (1997), Huemmrich (2001), 
Hanan (2001) and Haverd et al. (2012).

Among these, the GORT model (Li et al., 1995; Ni et al., 
1997) has had extensive application, including lidar 
data inversion, as described (for example) in  
Ni-Meister et al. (2010). However, despite the 
enthusiasm of the early authors, more pragmatic 
approaches have been taken since that time based on 
semi-empirical BRDF models, as outlined below, and 
on mixture models for vegetation canopies.
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Excursus A1.1 —Geometric Optical Models

Source: Jupp and Walker (1996)

A simple model for the remote sensing of a canopy is 
the Geometric Optical (GO) model. The simple GO (or 
hotspot) model for scenes which describe open forest 
or woodland areas is based on the one described in 
Jupp et al. (1986), Strahler and Jupp (1991a, 1991b) 
and Li and Strahler (1992). In this model, there are 
four kinds of ground cover ‘visible’ from a given 
direction. These are referred to as scene components 
and comprise:

 § sunlit canopy (sc);

 § shaded canopy (shc);

 § sunlit background (sb); and

 § shaded background (shb).

Each component is assumed to have a characteristic 
radiance and the radiance of a pixel is modelled as 
the area weighted combination (or linear mixture) of 
the characteristic component radiances. That is, the 
observed radiance of a single pixel (r

s
) is modelled as:

where

subscripts sc, shc, sb, and shb indicate the 
radiances of the four components as named 
above;

R
j
 represents the (mean) radiance of component 
j; and

k indicates the sensed proportion of each 
component within the pixel from the given view 
direction.

Assuming the view and Sun directions are constant, the 
mean radiance over the scene (R

s
) can be written as:

where

capital K
j
 represents the mean or expected value 

of the varying proportions k
j 
over the scene for j 

as the components sc, shc, sb or shb; and
mean value (R

s
), as a function of Sun and observer 

position, defines the BRDF of the scene.

In order for the scene BRDF model to be computed, 
a description of the size and shapes of the objects, 
their density and how they are distributed over 
the background is needed and the geometrical 
relationships between the objects and the expected 
values of the four components must be established. 
Jupp et al. (1986), Strahler and Jupp (1991a; 1991b) 
and Li and Strahler (1992) describe such a model for 
spheroidal crown (not necessarily opaque) volumes, 

which is valid for any view or illumination angles 
using the ‘Boolean’ model of Serra (1982). In the 
Boolean model, the object ‘centres’ are assumed to 
be randomly distributed in a ‘Poisson’ distribution. 
By defining the geometry and the distributions, 
expressions for K

j
 may be derived. Strahler and Jupp 

(1991a, 1991b) use a simple model for spheroids, 
which is adequate for moderate Sun and view zenith 
angles, while Li and Strahler (1992) provide some 
more general alternative models for resolving the 
K

j
. These basic scene BRDF models are quite simple 

and are easily implemented in various forms such as 
mathematical packages or spreadsheets.

In the woodlands and open forest areas typical of 
the area of Australia where the model studies have 
been made, the pixel to pixel behaviour of the image 
is conveniently (if not as accurately) described by 
a simpler form of the model in which the shaded 
background, sunlit (but still relatively dark) tree and 
shaded tree components are combined into one so that:

where X is a composite component combining sunlit 
and shaded tree and shaded background and R

X
. is 

computed as:

The simpler model has the advantage for this 
discussion that it shows clearly how, in many 
woodlands, the image pixel to pixel variation is 
driven primarily by the variation in the proportion of 
sunlit background that is visible in the pixels and the 
contrast between this sunlit background and the other 
components. It also provides a simple estimate for 
k

sb
 from images where R

sb
 and R

X
 are known for an 

appropriate image channel, or channel combination, as:

For such a model, the mean radiance (that is, 
BRDF) over all pixels in a patch with the same basic 
underlying type of cover and structure is therefore:

where K
sb

 is the mean value of k
sb

, or the expected 
proportion of visible sunlit background for the 
particular Sun and view positions. This simple model 
has been found to be adequate for describing the 
data obtained by a Daedalus scanner over woodlands.
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Linear end-member analysis is similar to the 
estimation of components described above. It has 
been the subject of useful research and application 
in Australia (Pech et al., 1986, Pickup and Foran, 
1987) and at regional scales where all pixels are 
mixtures of land covers of interest (Cross et al., 1991). 
End-member analysis assumes each pixel to be a 
composition, or mixing, of a few base components 
or ‘end-members’. The pixel signature is assumed to 
be a linear sum of reflectances from each of n end-
members weighted in proportion to its cover (k

j
) in 

the pixel:

where k
j
�0 for j=1,n

End-member analysis seeks to invert this mixing by 
deriving the proportions (k

j
) of each component in 

the pixel signature. This can feasibly be derived from 
EO data provided that if there are n components 
(trees, shrubs, grass etc.) then there are at least (n-1) 
channels of data that separate the end-members 
spectrally. The key assumptions built into the end-
member method are that:

 § end-members (pure examples of total cover by 
trees, shrubs, grass and background) are spectrally 
consistent between sites; and

 § reflectance values for end members (R
j
) are 

available from EO data or can be accurately 
derived by other means (such as field spectral 
measurements).

There has been considerable work aimed at deriving 
end-members from the data (a form of Principal 
Components Analysis; see Boardman, 1990; 
Appendix A6.3 below; and Volume 2C) and employing 
high spectral resolution data to effect separation of 
more than a few components (Adams et al., 1989). 
However, with a lack of available high resolution 
spectral data, this linear approach suffers from several 
significant limitations to its applicability in Australia:

 § available broad band signatures of the tree and 
shrub crowns over much of Australia whilst 
different, are not markedly spectrally distinct;

 § even if spectrally distinct crowns did exist for the 
available bands, their distinction is confounded by 
the effects of shadowing within crowns and cast 
shadow on the background (with bigger plants 
shading smaller plants). This makes the signature 
of the end-members difficult to estimate as the 
signature depends on the proportions of crowns 
and shadows present and variations in Sun and 
viewing angles; and

 § relatively low covers of trees and shrubs, together 
with shadowing, introduce such high spectral 
variance into the data relative to the spectral 
contrasts between end-members that the numerical 
methods used in the end-member analysis become 
highly unstable.

Shadow effects obviously depend primarily on the 
Sun angle. Although the crown cover is the same, 
lower Sun angles clearly decrease image brightness. 
Differences due to shadowing can be taken into 
account in end-member analysis, provided the end-
member values are recalculated for each temporal 
image and one or more components labelled ‘shade’ 
are added to the list. However, its successful 
application still depends on an assumption of linear 
scaling along cover gradients due to Sun positional 
and sensor view angle changes. These assumptions 
in practice are erroneous in structured vegetation 
(for example, vegetation with discontinuous cover of 
trees or shrubs), and this limits the application of such 
methods to general synoptic estimates of change in 
cover.

In structured vegetation, that is where the cover of 
trees and/or shrubs is discontinuous, it is appropriate 
to model vegetation cover directly as an assemblage 
of various sizes and shapes of three-dimensional 
objects (trees, shrubs, grass tussocks, herbs, etc.) 
scattered on a background that may be uniform or 
heterogeneous (Li and Strahler, 1985; Jupp et al., 
1986). The GO model may then be used to model 
the bidirectional reflectance of the canopies. In 
this approach, the effects due to shadowing on the 
overall reflectance (or infrared temperature) from a 
scene become important and useful features and the 
correlated interactions between shaded and sunlit 
components are built into the analysis—although it 
now becomes nonlinear. The directional radiance of 
the vegetation is then a mixture of four components 
(sunlit and shaded tree crowns, and sunlit and shaded 
backgrounds) that is seen from a given viewing angle. 
The areal proportions of these four components, for 
given illumination and viewing directions (which can 
be off-nadir), will be a function of the sizes, shapes, 
orientations and placements of the objects (that is, 
individual plants) within the scenes.

A GO model is most appropriate to woodlands 
or vegetation in which the vegetative cover is 
discontinuous, that is, where tree and shadowed 
background interactions account for a large 
proportion of the variance in the image. The further 
advantage of such models would be that they could 
also potentially be invertible and provide structural 
as well as cover information. The invertibility of GO 
models was demonstrated in principle by Franklin and 
Strahler (1988) and Wu and Strahler (1993) in which 
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tree size and density were estimated from reflectance 
data. When size, shape and orientation are fixed or 
characterised by distributions of known parameters, 
and the object centres are randomly distributed, 
then the proportions of the four components can 
be estimated using the Boolean model of Serra 
(1982). This GO model is termed the Boolean version 
(Strahler and Jupp, 1991a; 1991b; Li and Strahler, 
1992). It accounts for the changes in proportions that 

occur with random overlapping objects as the density 
of objects increases and can easily model scale 
effects and changing Sun and view directions. The GO 
aspect of the model implies that multiple scattering 
of radiation in the vegetation layer is neglected. While 
the evidence of our eyes supports this, there are 
wavelengths (in particular the near infrared) where 
multiple scattering is very significant (Li et al., 1995).

A1.3 Semi-empirical Methods
Semi-empirical BRDF models have also been 
developed which are empirical but are based on 
physical models and often contain parameters that 
relate to surface parameters. They offer the means 
of using the mosaic approach and ‘empirical’ model 
fitting but also enable surface parameters to be 
extracted. The methods are called ‘semi-empirical’ 
because they generally assume atmospheric 
correction can be done and also often have forms that 
involve Earth surface parameters. The main class of 
these models is that of the ‘kernel’ models.

The following text describing the kernel approach was 
extracted from the MODIS-Land ATBD (Strahler et al., 
1995b).

A1.3.1 Theoretical description
Kernel-driven models for the bidirectional 
reflectance distribution function of vegetated land 
surfaces attempt to describe the BRDF as a linear 
superposition of a set of kernels that describe basic 
BRDF shapes, with the coefficients or weights chosen 
to adapt the sum of the kernels to the given case. 
Typically, semi-empirical kernels are based either on 
one of several possible approximations to a radiative 
transfer scenario of light scattering in a horizontally 
homogeneous plant canopy (such as a crop canopy), 
or on one of several approximations feasible in a 
geometric-optical model of light scattering from a 
surface covered with vertical projections that cast 
shadows (such as a forest canopy). Deriving a kernel 
of this nature requires simplifying and manipulating a 
model for the BRDF until it reaches the form:

in which k is a function only of view and illumination 
geometry, c

1
 and c

2
 are constants containing physical 

parameters, and R is the modelled value of the true 
BRDF, r.

Semi-empirical kernels can be of two types. First, 
they may contain only geometric terms, but no 
physical parameters. The complete model then is 
linear, and may be scaled to arbitrary scales even 
for mixed scenes; neglecting adjacency effects, the 
weights of the kernels will be linear functions of 
the areal proportions of the sub-pixel weights. The 
so-called Ross-kernels, which are approximations 
to the radiative transfer theory in plant canopies of 
Ross (1981) described below, belong to this class, as 
does the so-called Roujean geometric-optical kernel 
(Roujean et al., 1992). In the second case, kernels 
contain one or very few physical parameters and 
thus instead of having one kernel, provide a family 
of kernels depending on these parameters. The 
geometric-optical Li-kernels (Wanner et al., 1995) 
belong to this type. In order to reduce them to the 
form given in the previous equation, the kernel-
internal parameters are fixed to a selection of a few 
values each. The following discussion presents each 
of the kernels used in the BRDF/Albedo algorithm. 
For more complete information on the theory and 
derivation of the kernels, see Wanner et al. (1995).

A1.3.2 Kernels
The Ross kernels are derived from a formula 
presented by Ross (1981) for the directional 
reflectance above a horizontally homogeneous plant 
canopy calculated from radiative transfer theory in a 
single scattering approximation. The Ross-thick kernel 
was derived and described by Roujean et al. (1992). It 
is based on an approximation for large LAI values:
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In the kernel, q
i 
and q

v
 are zenith angles for 

illumination and view, respectively; f is the relative 
azimuth of illumination and view directions; and x is 
the phase angle of scattering:

In the constants:

s is leaf reflectance (= leaf transmittance);

r
s
 is the (assumed isotropic) surface reflectance of 
the soil or understory;

LAI is the leaf area index; and

B is the average of secants of possible view and 
illumination zenith angles. For this formulation, a 
spherical leaf angle distribution is assumed.

The Ross-thin kernel simplifies Ross’s equation based 
on an approximation for small LAI values:

Although this kernel applies primarily to the case of a 
thin canopy of scatterers over a uniform background, 
it can also be appropriate for a very dense, uniform 
canopy of high leaf area, since in that case the leaf 
layers below the uppermost can act like a uniform 
background (Strahler et al., 1995a).

The derivation of the Roujean geometric-optical 
kernel is presented in the appendix to the paper of 
Roujean et al. (1992). The kernel may be regarded 
as accounting for the scattering of a random 
arrangement of three-dimensional rectangular solids 
(‘bricks’) with isotropic scattering surfaces. Shadows 
are taken as perfectly black. Mutual shadowing, in 
which the shadow of one object falls on another 
object, is not taken into account. The bricks are 
long with respect to their height h and width b. The 
kernel is:

The Li kernels are derived from the modelling 
approach of Li and Strahler (1986, 1992). In this 
approach, the surface is taken as covered by 
randomly-placed projections (such as tree crowns) 
that are taken to be spheroidal in shape and centred 
randomly within a layer above the surface. The BRDF 
is modelled as a function of the relative areas of sunlit 
and shaded, crown and background that are visible 
from the viewing position in the hemisphere. For the 
Li-sparse kernel, it is assumed that shaded crown and 
shaded background are black, and that sunlit crown 
and background are equally bright. Under these 
circumstances, and with some further approximations 
in the way that view and illumination shadows overlap, 
the Li-sparse kernel is:

where

In these expressions, b is the vertical radius of the 
spheroid; r is the horizontal radius of the spheroid; and 
h is the height of the centre of the spheroid. For this 
model,

Here, C is the brightness of sunlit surface, and l is the 
count density of spheroids (number of spheroids per 
unit area).
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The Li-dense kernel differs from the Li-sparse 
kernel in that it accommodates mutual shadowing. 
It assumes a random distribution of crown heights 
to maximize the geometric-optical effect in a dense 
ensemble of canopies.

These kernels are not yet linear in that they still 
contain two parameters, namely the ratios b/r and 
h/b, describing crown shape and relative height. The 
kernels therefore actually represent two families of 
kernels, governed by the values of these two internal 
parameters. For the present, we provide two choices 
for each parameter, thus providing four kernels within 
each family. For the b/r ratio, the values 2.5 (prolate 
shape) and 0.75 (oblate shape) are used; for the h/b 
ratio, we use values of 2.5 (tall) and 1.5 (short).

A1.3.3 Kernel-driven models
A complete kernel-driven semi-empirical model is 
formulated as a linear combination of kernels. Most 
suitably it has the form:

which is derived from adding appropriate choices 
of geometric-optical surface-scattering and 
radiative-transfer volume-scattering kernels, each 
multiplied by a proportion a or (1- a) that weights the 
contribution of each model. These proportions may be 
regarded as the areal proportions of land cover types 
exhibiting each type of scattering (neglecting multiple 
scattering between the two components), or as mixing 
proportions for land cover types that display both a 
volume-scattering and a geometric-optical contribution 
to the BRDF. The quantities k

geo
 and k

vol
 are the 

respective kernels; the factors f
geo

 and f
vol

 are their 
respective weights; and the term f

iso
 is the isotropic 

contribution. Using the kernels presented above, there 
will be two choices for k

vol 
and three for k

geo
 , providing 

six possible models (disregarding here the four sets 
of internal parameters used for the Li kernels). The 
formulae for f

iso 
, f

geo
 ,and f

vol
 are shown in Table A1.1.

In the inversion and fitting of a semi-empirical model 
to data, estimates of the weights f are retrieved from 
bidirectional reflectances and specification of viewing 
and illumination positions. Although this objective 
satisfies many of the goals of the BRDF/Albedo 
product, the existence of formulae for the weights f in 
terms of physical parameters could provide for direct 
inference of physical parameters from the weight 
values fitted.

Table A1.1 Semi-empirical weight formulas

Model Weight Formulae

Ross-thin  
+ Roujean

Ross-thick  
+ Roujean

Ross-thin  
+ Li-sparse

Ross-thick  
+ Li-sparse

Ross-thin  
+ Li-dense

Ross-thick  
+ Li-sparse
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A1.3.4 Modified Walthall model
Empirical models can be understood as being of the 
kernel-driven model type as well, where the kernels 
are empirical functions. An example is the modified 
Walthall model, derived by Walthall et al. (1985) and 
improved by Nilson and Kuusk (1989). It has the form:

Note that this is the same form as the semi-empirical 
models discussed above—it comprises a weighted 
superposition of functions of angles, and the 
weights p0K3 are the parameters of the model. As a 
consequence, models like the modified Walthall model 
can be processed along with linear semi-empirical 
models by the same linear inversion scheme.

A1.3.5 Advantages of linear models
Linear models have a number of advantages in the 
context of global data processing. The opportunities 
arising from linearity in BRDF models have been 
discussed by Barnsley et al. (1990) and Strahler et al. 
(1995b). A first advantage is that, provided sufficient 
observations of BRDF are available, any linear model 
can be inverted analytically through matrix inversion 

for the system of equations obtained by setting 
the derivative of the error function to zero. This 
provides direct estimates of the parameters f

iso
 , f

geo
  

and f
vol 

while avoiding numerical inversion problems 
associated with nonlinear models.

Second, both the directional-hemispherical and bi-
hemispherical integrals of the BRDF (black-sky and 
white-sky albedos) may be pre-calculated for each 
kernel individually. The albedo of a model then is 
simply the sum of the kernel albedos, weighted by f 
values. By using a look-up table, numerical integration 
of the models can thus be avoided.

Third, linear BRDF models scale linearly in space 
if adjacency effects are assumed to be small. This 
allows for mixed pixel cases, as indicated by the areal 
proportion parameter a in the model factors listed 
above. This feature also allows scaling BRDF and 
albedo from one spatial resolution up to a coarser one, 
such as to a particular resolution needed for a climate 
model. Finally, since some of the parameters driving 
the models are dependent on wavelength while others 
(such as structural parameters) are not, it may be 
possible to extract all or some of them from multiband 
analysis, making assumptions about the others.

A1.4 The Issue of Scale
The BRDF models mentioned above and used to 
develop the kernels are general ‘average’ scene 
models that apply to spatially averaged data over 
homogeneous target areas. They do not model the 
image variance (which is also angle dependent) nor do 
they apply to a single object in a scene. The BRDF of 
a single tree is different from that of a stand of trees 
and the BRDF of a stand of trees is different from that 
of an open soil area.

Scaling affects the basis for image stratification. The 
tree and gap structure at one scale provides different 
functions for a stand and bare area delineation. At a 
broad scale, the composite of tree and gap merges 
into stands and at another stands and clearings 
merge in a ‘woodland’ category. At each level, the 
BRDF of the separated components will be different 
from each other and the composite land cover.

This leads to the consideration of some issues most 
important in an approach to correcting high resolution 
images for BRDF effects. The atmospheric effect is 
very smooth having been ‘filtered’ by an MTF with a 
size of about 200 m in most cases. However, the BRDF 
is highly variable. Consider a photograph with a wide 
field of view and the solar hotspot near to its centre. 
A tree near the nadir view and a similar one near the 
edge will have different brightness but the difference 
will not be as great as the overall brightening due 

to Volume and hotspot effects. In particular, there 
will be much more shadow at the edges reached 
away from the hotspot direction and path lengths for 
Volume scattering will be longer through the canopy 
than at the geometric centre of the frame. The ‘colour’ 
of shadow near the edges will also be slightly darker 
than at the nadir but not very different. In this case, 
applying an overall BRDF correction function will tend 
to change the colour of shadows and tree crowns at 
the edge in a way that may be quite wrong—even 
though the overall area average may be ‘balanced’. 
Obviously, what works at one scale may not help at 
another.

Even if an H-resolution (high resolution) approach is 
taken in which the BRDF of the objects is modelled 
(trees for example), the fact will still be that the image 
contains different geometric proportions of scene 
objects and components in a way that depends on the 
phase angles between the Sun, the target object(s) 
and the view. Perhaps the only perfect way to resolve 
the issue is by 3D stereo modelling. This is unlikely 
to be cost-effective with video or digitised aerial 
photograph data.

BRDF models are further detailed in Appendix 2.
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Appendix 2  
BRDF Models

This Appendix reviews a number of Bidirectional Reflectance Distribution Functions (BRDF) that are 
commonly used in conjunction with EO imagery3.

A2.1 Kernel Models

3 In this appendix, most text and equations have been sourced from Jupp (2000).

 
Background image: The appearance of identical metal cylinders, illuminated from a fixed light source, changes with their position relative to the viewer. 
This rendered image is based on the Ward Duer model, an anisotropic BRDF model for brushed metal effects (Ward, 1992; Walter, 2005).

These are (semi-)empirical models based on linear 
combinations of ‘kernels’:

which represent surface reflectance (r) as a function 
of component reflectances (f

x
) and the kernels (k

x
), 

which are mathematical functions that depend on 
Sun (or incident) and view (or observer) angles q

i 

and q
v
. The subscripts ‘geo’ and ‘vol’ refer to the 

physical bases for some kernels in which there is an 
identification of a ‘geometric’ or hotspot factor and a 
‘volume’ or path length and scattering factor.

By convention, kernel models are expressed in way is 
that when Sun and observer are at zenith:

so that . Some published models do not 
enforce this convention but all can if needed.

To compute the kernel models, we need to specify which 
choice of the angular description is being used for Sun 
and view directions. Sometimes this is ‘target based’ and 
sometimes it is ‘sensor based’. Relative to an airborne 
scanner, the position of the hotspot is dependent on 
flight direction, aircraft attitude, scan read-out order, etc.

In an aircraft and scanner situation, the pointing vector 
for a pixel may be defined pointing ‘up’ or ‘down’ and 
there are important issues of whether the scanner 
scans left to right or right to left! In atmospheric 
correction routines, the conventions of the scanner and 
aircraft model frame must be very carefully specified. 
Any data on angles that came with images being 
investigated with kernel models must follow a single 
convention or be carefully and fully specified.

For the following, the consistent convention being 
used is the ‘target based’ one. That is, the geometry 
is as illustrated in Figure A2.1, where q

i
 is the Sun or 

incident ray zenith angle, q
v
 is the view or observed 

zenith angle and the azimuth (f) is relative to the Sun 
position. This is the convention used by the MODIS 
MODLAND team in their product ATBD (Strahler et al., 
1996) and also in AVHRR pathfinder.

Figure A2.1 Geometry of remote observer
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Two important functions of the view and Sun 
positions, which are used often in the following, are 
the angle between the Sun and view vectors (x) 
and the related ‘distance’ between the Sun and view 
vectors (D) as defined by:

and

Clearly, if the Sun and view positions align (so that 
q

v
=q

i
 and f=0) then both x and D equal zero. To 

see how they operate away from this ‘hotspot’ point 
it is useful to consider the ‘Principal azimuth’ (or 
almucantar) for whichq

v
=q

I 
. That is left to you.

A2.2 Primary AMBRALS Kernel Models
The base components of the AMBRALS kernel 
models (Wanner et al., 1995) can either be used as 
individual kernels of combinations or as described in 
Appendix A2.2.8. They are as follows:

A2.2.1 Ross-thin (vol) model
Derived in Wanner et al. (1995) based on Ross (1981):

A2.2.2 Ross-thick (vol) model
Derived in Roujean et al. (1992) based on Ross (1981):

A2.2.3 Roujean (geo) model
Original Roujean model was ‘Roujean’ + Ross-thick 
kernel model. Here ‘Roujean’ refers to the geometric 
kernel:

A2.2.4 Li-sparse (geo) model
The Li-sparse and Li-dense kernels are derived in 
Wanner et al. (1995). A detailed mathematical outline 
of the computation (the derivation is discussed in 
Appendix A2.4.3) is as follows:

 § sequence of steps for calculations:

 § The Li-sparse kernel follows from these definitions 
as:

A2.2.5 Li-dense (geo) model
The Li-dense approximation refers to dense 
vegetation canopies. Using the same definitions as for 
the Li-sparse kernel it is:
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A2.2.6 Cox-Munk (geo) model
Based on the Cox-Munk (1954) model for sunglint and 
presented in Strahler et al. (1996):

where s2 is the wave slope variance (nonlinear 
parameter):

w is the wind speed and the parameter q
n
 is defined as:

A2.2.7 Walthall (vol) model
This empirical model (also called the ‘limaçon’ 
function) was due to Walthall et al. (1985) and 
improved by Nilson and Kuusk (1989) to include 
reciprocity. It has four linear parameters:

A2.2.8 MODIS products
Best fitting model from a selection of kernels 
(AMBRALS) include:

 § Ross-thin + Li-sparse;

 § Ross thin + Li-dense;

 § Ross-thick + Li-sparse;

 § Ross-thick + Li-dense;

 § Cox-Munk + Li-sparse; and

 § Walthall.

The first four of these have parameters that can be 
converted to ‘physical’ parameters.

A2.3 Extensions and Alternatives

A2.3.1 Reciprocal Li models
The proposed MODIS AMBRALS approach and the 
later choice of a single pair of Ross and Li models 
for operational MODIS BRDF products also used 
modified definitions of the kernels. The change was 
to make the models ‘reciprocal’ in that if the Sun and 
observer positions are interchanged the resulting 

BRDF value is unchanged. Reciprocity of the BRDF 
models is a fundamental property of the models (see 
Appendices A2.4.3 and A2.4.4), from which the Li 
kernels derive. Although the changes do not have a 
physical basis, the models are thought to be ‘better’ 
for having reciprocity. The changes were (for the 
same definitions of terms as before):
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A2.3.2 RPV model
Rahman, Pinty and Verstraete (RPV) model derived in 
Rahman et al. (1993) based on Pinty et al. (1990) and 
Pinty and Verstraete (1991):

where the linear parameter is r
0
 and g, k [and d] 

are nonlinear parameters (generally d≈1). M is the 
Minnaert model, P is the Henyey Greenstein phase 
function and H is the hotspot function.

A2.3.3 MRPV model
Multiangle Imaging Spectroradiometer (MISR) version 
of RPV model as suggested by Martonchik et al. 
(1998):

where  is an average reflectance assumed known 
if the algorithm is ‘linearised’ by taking logarithms; 
otherwise a simple nonlinear iteration can be used.

A2.3.4 Staylor and Suttles model
As given in Cosnefroy et al. (1996), following Staylor 
and Suttles (1986):

where Y
0
 and Y

1
 are two linear parameters and C

sw
 and 

N are two nonlinear parameters. This model is very 
flexible and quite useful. The nonlinear parameters 
seem to converge quite quickly.

A2.3.5 Shibayama and Weigand model
Developed in Shibayama and Weigand (1985, 1986) 
and used in Qi et al. (1995):

A2.3.6 Dymond and Qi model
Derived by Dymond and Qi (1997):

Parameters are one linear (r
0
) and two nonlinear (h 

and R) where R=s
i 
/s

v

A2.3.7 Chen modification to Roujean model
In Chen and Cihlar (1997) a modification of the 
Roujean model is proposed based on a simplification 
of Chen’s more complex canopy model. The simple 
model reduces to:

where the constants C
1
 and C

2
 must be determined 

from the data. This added flexibility allows the 
Roujean model to approximate the hotspot effect 
much more successfully than before. Perhaps 
choosing a better model would be even better!

The Chen modification could, of course, be applied 
to any of the Kernel models to ‘sharpen’ the hotspot. 
However, there are two extra parameters to estimate.
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A2.3.8 Liang modification to Walthall model
In a similar way to the modification of the Roujean 
model by Chen to improve modelling of the hotspot, 
Liang and Strahler (1994) modified the Walthall 
model to include a hotspot effect. They increased the 
number of parameters from four to six by proposing a 
linear sum of the two models in the form:

where the first is the Walthall model described above and:

where, as above, C
1
 and C

2
 are adjustable parameters. 

In this case, one is non-linear and the hotspot shape is 
added rather than used multiplicatively.

Jupp (1997) described how a Walthall model plus 
a Li-sparse kernel could also effectively model a 
woodland BRDF with the Walthall accommodating the 
Volume effect and the Li-sparse modelling the hotspot.

A2.3.9 Pickup and Chewings model
Pickup et al. (1995a,b) developed and extended an 
approach similar to one originally reported by Royer 
et al. (1985) to correct Video images for BRDF and 
other angular effects.

A simple linear ‘kernel’ model of the form:

Was fitted to a line of Video data frames and then 
used to normalise the individual frames in the line. 
The cos4 term was introduced to account for lens 
effects but can also model a Volume effect. The 
authors claim the power is insensitive to choices 
between 2 and 4.

A2.4 Slightly More Complex Models: Not in ‘Kernel’ Form

A2.4.1 Otterman model
Used in Deering et al. (1990) and based on previous 
work by Otterman (such as Otterman and Weiss, 
1984), where the geometry is based on thin vertical 
cylinders:

where the parameters to be modelled are:

s or ‘cylinder area index’; and
r

p
 or plant reflectance.

and three soil reflectance parameters:

where

f is the Lambertian fraction;
r

0
 is the Lambertian reflectance;

r is facet reflectance; and
t is facet transmittance.

That is, five parameters in all. Four of the parameters 
are linear but s is nonlinear.
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A2.4.2 Verstraete, Pinty and Dickinson 
(VPD) model
Derived in Verstraete et al. (1990) and Pinty et al. 
(1990). This is a more complex form than the RPV 
model given above.

where

m
i
=cosq

i 

m
v
=cosq

v

Following Dickinson et al. (1990) after Goudriaan 
(1977):

where

c
l
 is a function of the leaf angle distribution of the 
canopy and varies from -0.4 for an erectophile 
canopy to 0.6 for a planophile canopy. Random 
orientation is zero.

For Isotropic: 

For Henyey and Greenstein: 

For Legendre:

The parameters for this model that need to be fitted 
in inversion or supplied for a given land surface are:

w  is the single scattering albedo;
g is the asymmetry of the phase function (and L

2
 if 

Legendre);
c

l
 is the scatterer orientation parameter (used to 
obtain k

i
 and k

v
); and

2rL is the structural parameter (r is the sunfleck 
radius and L is the scatterer area density).

A2.4.3 Strahler and Jupp simple model
This is derived as in Strahler and Jupp (1991) but here 
using overlap function derived for the Li kernels (see 
Appendices A2.2.4 and A2.4.4). In this model, there 
are four kinds of ground cover ‘visible’ from a given 
direction. These are referred to as scene components 
and consist of sunlit canopy (C), shaded canopy (T), 
sunlit background (G), and shaded background (Z). 
Each component is assumed to have a characteristic 
reflectance and the reflectance of a pixel is modelled 
as the area weighted combination (or linear mixture) 
of the characteristic component reflectances. That is, 
the observed reflectance of a single pixel is modelled 
as:

where C, T, G, and Z indicate the reflectances of the 
four components as named above, R

x
 represents the 

(mean) radiance of component ‘x’ and k indicates the 
sensed proportion of each component within the pixel 
from the given view direction.

Obviously, with these definitions:

If the proportions are replaced by their expectations 
then the various components can be derived from the 
equations:

which, given the closure above, means there is one 
extra condition to complete the model. This was done 
one way in Strahler and Jupp (1991) and in a second 
way in Li and Strahler (1992).

In Strahler and Jupp (1991) it was assumed that the 
proportion of visible sunlit tree was the same as for a 
single tree. That is:
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This model is the basis for the simplified Li-sparse 
formulation. In the full model, the four signatures must 
be determined as well as the ratios b/r and h/b and 
the vertical projected ‘crown area index’, or cover, lA.

There are some simplifications. For example, in cases 
where the background is bright and trees dark it is 
possible to write:

where X refers to a composite of tree plus shade, 
which is assumed dark. Obviously,

This simple two-component model can often do a 
very good job. If, however, the variation is dependent 
on the differences between sunlit and shaded 
tree then the model will not do so well. It is often 
better just to assume that shaded tree and shaded 
background have the same colour. This reduces the 
number of parameters and is usually a reasonable 
assumption.

In the Li-sparse kernel given above and derived in 
Wanner et al. (1995), it is assumed that R

T
=R

Z
=0 and 

R
C
=R

G
. Then:

which is the form previously given.

A2.4.4 Li’s ‘top easy seen’ modification
Li and Strahler (1992) modified the simple model to 
take account of the fact that when the density of 
trees increases then the shaded crown tends to be 
‘hidden’ and the view becomes dominated by the 
sunlit crown tops.

Of a number of choices, the one used for the simple 
dense canopy models assumes that:

where F is the ratio for a single crown or rather the 
very dense case. It follows that:

The model may now be resolved and even inverted 
as it stands or it may be approximated in various 
ways with simpler forms. This model is used in dense 
vegetation and the previous one in sparse vegetation.

Note that this is equivalent to:

which asymptotes to the same result as before when 
the density is low ( ).

To derive the Li-dense kernel (Wanner et al., 1995), 
suppose R

G
 is neglected since there is so little sunlit 

soil showing in dense vegetation and also the forest 
floor may be dark material. Assume all shadow and R

G
 

is zero. Then:

which is again in the form of the Li-dense kernel 
approximation. But again, it is possible also to solve 
the complete model or a model with some less 
restrictive assumptions if the linear kernel structure 
is not enforced.

A2.4.5 Hapke BRDF model for soils
Hapke (1981, 1986) derived a model for dimensionless 
particles, which has principally been applied to Soil 
data and is used also in the RPV and VPD models. The 
model was:

where

m
i
=cosq

i

m
v
=cosq

v
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B(x) is a backscattering function that accounts for 
the hotspot effect:

Where S(0) defines the magnitude of the ‘hotspot’ and 
h defines the width.

P(g,x) is the phase function for the particle collection 
with asymmetry g:

 
(Henyey and Greenstein)

 
(Legendre)

In the Legendre case there is an extra parameter L
2
.

H(x,w) is a function to account for multiple scattering:

The parameters for this model that need to be fitted 
in inversion or supplied for a given land surface are:

w is the single scattering albedo;
g is the asymmetry of the phase function (plus L

2
 

for the Legendre phase function);
S(0) is a parameter defining the height of the 

hotspot function at the hotspot; and
h is a parameter that controls the width of the 

hotspot function.

A2.4.6 Ross’ simplified vegetation canopy 
formula
The ‘turbid medium’ formula by Ross (1981) which 
was used by Roujean et al. (1992) to derive a 
Volume kernel (the Ross-Thick) and by Wanner et al. 
(1995) to derive another (the Ross-Thin) kernel was 
simplified by both groups of writers to the following 
form as an initial step in their formulation:

where

r
L
 is the reflectance of a single leaf;

r
s
 is the background soil reflectance; and

LAI is Leaf Area Index

If these three parameters are estimated subject to the 
reflectances being in the range (0,1) and LAI>0 then 
this provides a model that includes both the Ross-thin 
and the Ross-thick (Wanner et al., 1995). As with all 
these non-kernel models, however, the fit will need 
to be nonlinear. However, this often presents little 
problem.

A2.4.7 Minnaert’s original model
Minnaert (1941) proposed a model that has been used 
for modelling topographic shading and has been 
used as a component in a number of semi-empirical 
models. Its form is:

This function is a reciprocal ‘volume’ scattering kernel 
in its behaviour with k=1 being Lambertian, k=0 being 
a ‘bowl’ with highest reflectances away from nadir and 
k=2 being an inverted ‘bowl’ with darkening away from 
nadir.

Parameters to estimate are r
L
 and k.

Topographic shading and large pixels, although not 
described in detail here, can also be modelled as 
a BRDF effect. In addition to the Minnaert model, 
the model by Hapke (Hapke, 1984) has been used 
successfully in this case.
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Appendix 3  
Colour Systems and Sequences

Colour science is introduced in Volume 2A—Section 5. The following sub-sections elaborate on additional 
aspects of colour systems and sequences, namely:

 § colour measurement (see Appendix A3.1);

 § colour systems (see Appendix A3.2); and

 § colour coordinates (see Appendix A3.3).

A3.1 Colour Measurement
An interesting aspect of human vision is that it is the 
mixture of wavelengths that are perceived and not 
the individual components. This means that a given 
same visual sensation could be produced by different 
physical stimuli. (Colours which appear to be identical 
but have different spectral composition are called 
metamers). This phenomenon is used as the basis 
for psychophysical colour matching experiments 
in which a colour is defined as a mixture of three 
primary colours. An infinite number of sets of primary 
colours may be defined subject to the condition 
that any one may not be produced by a mixture of 
the other two. The red, green and blue lights used 
in the additive system were selected to obtain the 
maximum range of mixture colours. It should be noted 
however that this range is still less than the full range 
of colours that can be perceived by humans (see 
Volume 2A—Section 5).

In colour matching experiments, a reference colour 
is defined by the proportions of the primary lights 
required to reproduce it. Due to the limited mixture 
range of the primaries however, some colours cannot 
be reproduced this way. These colours are matched 
by adding one or two of the primaries to the reference 
colour and defining the reference by subtracting the 
proportion of those primaries added from the mixture 
used to match it. These proportions can then be 
plotted on a chromaticity diagram.

To avoid negative terms in these definitions, three 
artificial primaries (that is imaginary colours) were 
determined by the CIE (Commission Internationale 
d’Eclairage) which are referred to as X, Y and Z (see 
Volume 2A—Section 5.1.2 and Appendix A3.3). While 
real primaries are used to perform the actual colour 
matching then the proportions are transformed 
algebraically to X, Y, and Z values for plotting on 
the standardised CIE diagram, this system has the 
advantage of allowing the measurement to be made 
with different sets of primaries.

Even in modern art, artists have used methods based on calculation, inasmuch as these elements, 
alongside those of a more personal and emotional nature, give balance and harmony to any work of art. 

(Max Bill)

Background image: The range of electromagnetic (EM) wavelengths that are visible to the human eye spans from 380 nm to 700 nm.
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A3.2 Colour Systems

A3.2.1 RGB and HSI
The RGB (Red,Green,Blue) and HSI 
(Hue,Saturation,Intensity) models for colour 
specification were introduced in Volume 2A—
Section 5.1.2. These models are related by their 
intensity axes. For the RGB cube, the intensity axis is 
defined by the line:

R = G = B

as illustrated in Figure A3.1a. Colours in the RGB 
colour space can also be defined as triangular 
coordinates on equal intensity planes across the 
cube (see Figure A3.1a). These coordinates can be 
normalised within each plane such that the values 
along each axis from the triangle centre to an apex 
vary from 0 to 1 (see Figure A3.1b).

Figure A3.1 RGB colour coordinates

The colours formed by differing proportions of the additive primary colours, red green and blue, can be represented as a three-
dimensional data space. The diagonal axis in this space, referred to as the intensity axis, represents the shades of grey from black 
to white that have equal proportions of each primary colour. The subtractive primaries occur at the diagonal ‘corners’ on each two-
dimensional plane through two axes. An infinite number of planes that are orthogonal to the intensity axis can be defined. Colours on 
each plane have equal intensity, with saturation increasing away from the axis and hue varying around it.

a. Orientation of RGB colour cube b. Definition of triangular planes in RGB cube

 

c. Normalised triangular coordinates d. Normalised chromaticity coordinates. Since, for any colour 
r+g+b=1, only two components need to be known to deduce a 
third. For example at the white point, r=1/3, g=1/3, so b=1-r-g=1/3.

 
Source: a. Harrison and Jupp (1990) Figures 11 and 102
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Cartesian coordinates in the RGB cube can be 
converted to normalised triangular coordinates by the 
equations: 

By definition, these normalised coordinates (r, g, b) 
sum to one, with the intensity of the plane being equal 
to the sum of the RGB values:

I = R + G + B

The HSI model defines colours on the equal intensity 
planes as coordinates of hue and saturation, with hue 
being measured as an angle around the plane and 
saturation as the radial distance from the centre of 
the plane (see Figure A3.2). Measurement of these 
parameters is detailed in Volume 2C—Section 9.3.2.

Figure A3.2 HSI coordinates

a. Intensity is measured along the diagonal axis between black 
and white.

b. Saturation is the linear distance from the intensity axis to the 
selected colour on an equal intensity plane. Hue is the angular 
distance from a primary colour (usually blue) to the colour on an 
intensity plane.

Source: Harrison and Jupp (1990) Figure 104

A3.2.2 XYZ and UVW
The rgb chromaticity coordinates were defined above 
as normalised proportions of R, G and B values. Since 
the normalised coordinates sum to one, only two are 
required to define a given colour—the third coordinate 
can be deduced from these two, for example:

b = 1 – r – g

The values of any two coordinates (usually r and g) 
can then be usefully represented as a chromaticity 
diagram as shown in Figure A3.3.

CIE have defined colour-matching functions for 
monochromatic stimuli of wavelengths 700 nm (Ro), 
546.1 nm (Go) and 435.8 nm (Bo), which can be used 
to match the spectral power distribution curve of 
any colour. These stimuli were defined to enclose the 
chromaticity diagram as illustrated in Figure A3.3. 

For 2° standard observer data (that is, standard 
colour measurement data based on a 2° field of view) 
the CIE tristimulus values, X, Y  and Z (see Volume 
2A—Section 5.1.2), are related to Ro, Go and Bo (Hunt, 
1987) as:

X = 0.49 � Ro + 0.31 � Go + 0.20 � Bo

Y = 0.17697 � Ro + 0.81240 � Go + 0.01063 � Bo

Z = 0.0 � Ro + 0.01 � Go + 0.99 � Bo

For diagrammatic simplicity, the XYZ values are 
usually normalised in the same way as the RGB 
coordinates and expressed as xyz values. A 
chromaticity diagram of x and y can then be used to 
represent the colour gamut on Cartesian coordinates.

Figure A3.3 CIE rg chromaticity space

The triangle Cb-Cg-Cr is equivalent to the triangle  
(0,0)-(0,1)-(1,0) in the CIE xy chromaticity space.

Retrieved from: https://upload.wikimedia.org/wikipedia/commons/1/16/
CIE1931_rgxy.png

https://upload.wikimedia.org/wikipedia/commons/1/16/CIE1931_rgxy.png
https://upload.wikimedia.org/wikipedia/commons/1/16/CIE1931_rgxy.png
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Figure A3.4 Perceptual colour differences

a. CIE 1931 xyz colour space b. CIE 1976 uvw colour space. The linear distance between 
colours in this coordinate system can be used to indicate the 
perceptual difference between them.
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Source: Colour space retrieved from https://upload.wikimedia.org/wikipedia/commons/8/83/CIE_1976_UCS.png

As illustrated in Figure A3.4a, this xyz space is not 
uniform in terms of perceived colour differences. 
MacAdam (1937) proposed a ‘uniform chromaticity’ 
triangle using the coordinates U, V and W (see 
Figure A3.4b). The normalised coordinates u and v of 
this system are related to the xy coordinates by:

u = 2x / (6y – x + 1.5)

v = 3y / (6y – x + 1.5)

Conversion from xy to uv coordinates can be 
simplified by use of a nomogram (Hunt, 1975). The 
uv chromaticity diagram approximates a uniform 
colour space, so allows relative perceptual differences 
between two colours to be computed as the Euclidean 
distance between the points that represent the 
colours on this diagram.

A3.3 Colour Coordinates
In many image processing systems, colours for image 
painting are specified as numeric values, such as in 
the range 0–511. Such numbers generally represent 
the proportion of the three additive primaries used in 
each colour. Using the standard CIE equations given 
in Appendix A3.2, these numbers can be transformed 
into uvw coordinates to show their distribution 
within the perceptible colour space. This conversion 
assumed that the proportions of each primary are 
directly related to the rgb coordinate scale, so do not 
account for the effect of device-specific gamuts.

To achieve maximum visual separation within a set of 
colours, the CIE uvw space needs to sampled evenly 
before transforming the sample coordinates back to 
their RGB components. Given the extensive spectral 
resolutions of many colour display devices, the 
resulting range of colours should be well-represented. 
The reproduction of the display colour on hardcopy 
devices, however, can still be challenging (see 
Volume 2A—Sections 5.1.3 and 6).
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Appendix 4  
Dithering

In computer graphics, to extend the perceived range of colours that is actually available from a limited colour 
palette on an output device, a technique known as ‘dithering’ can be used. This approach relies on the human 
eye blurring adjacent colours to perceive a mixed colour (see Figure A4.1). Dithering methods are comparable 
to halftone printing techniques and are commonly used to expand the range of colours represented by display 
hardware.

Figure A4.1 Dithering example

This sequence of image use just two colours, red and blue, but as the area of each colour is reduced, the human eye blurs them to 
appear as the single colour purple.

A4.1 Dither Matrices
One form of dithering relies on using a ‘dither matrix’. 
The dithering technique used for inkjet printers, for 
example, is implemented by grouping together square 
or rectangular blocks of dots (called ‘nibs’), then using 
the blended colour of each group of dots to represent 
a single pixel in the image. The size of a dither block 
can vary and affects the number of colours that can 
be represented. A non-square image pixel may be 
more closely represented using a rectangular dither 
matrix such as 3�4 dots.

Figure A4.2 Dithering sequence

For example, to print value 3 with an output value range 0–4 
(such as in a 2�2 dither), dots are printed at positions 1, 2 and 3 
in the dither matrix.

Source: Harrison and Jupp (1990) Figure 35

If we use a 2�2 dither block (or ‘printer pixel’) for each 
image pixel, we have increased the intensity variations 
for the pixel from 2 (one dot ON or OFF) to 5 (all 
4 dots OFF, one dot ON, two dots ON, three dots ON 
or all 4 dots ON) as shown in Figure A4.2. The three 
primary inks allow 23 = 8 different colour possibilities 
for a single dot. In a 2�2 dither we can represent 
53 = 125 different colours. Other dither sizes include:

 § 2�3 (7 intensity levels: 73 = 343 colours);

 § 3�3 (10 intensity levels: 103 = 1,000 colours);

 § 3�4 (133 = 2,197 colours); and

 § 4�4 (173 = 4,913 colours).

For these colour ranges to be effectively used in a 
printed image however, the digital image must have a 
correspondingly diverse range of data values.

Background image: High resolution aerial image of coastal environment near Broome, WA, acquired on 27 July 2017. Source: © EagleView
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Figure A4.3 Example dither matrices

a. 2�3

b. 3�3

c. 3�4

d. 4�4

Source: Harrison and Jupp (1990) Figure 36

The ‘cost’ of this increased colour range is the number 
of pixels that may be plotted across the page. With a 
2�2 dither we are using two dots across the page and 
two dots down to represent one printed pixel. If the 
printer allows only 1,024 dots across the page, then 
using a 2�2 or 2�3 dither we can only print 512 pixels. 
Similarly, a 3�3 or 3�4 dither would only allow 1024/3 
or 341 pixels across the page.

The order of intensity changes within a dither block 
are usually coded in matrix format (hence the term 
dither matrix). The values at each dot position in the 
matrix indicate the intensity at which that dot will 
become activated. Any other dots with values below 
this value are also used. For example, in Figure A4.2, 
to print intensity level 3 we use the dots at positions 
1, 2 and 3 in the dither. Some other dither matrices 
that have been used in image processing software 
are given in Figure A4.3. As discussed, the dither size 
determines the intensity range of a printed image. To 
make best use of the available contrast, enhancement 
techniques (as described in Volume 2A—Section 4.2) 
are usually applied to image data before mapping to 
this range.
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A4.2 Designed Order
The ordering within a dither matrix needs to be 
carefully selected to avoid geometric patterns (such 
as basket-weave, twill, or herringbone tweed) in areas 
of uniform intensity or low frequency blotchiness. 
Colour transitions in an image need to be smooth 
to give the impression of continuous variations in 
tones. One method for achieving this effect is to use 
dither matrices in which the rows and columns sum 
to approximately the same value. This criterion can 
only be achieved for square matrices but satisfactory 
results may still be obtained in other shapes.

The 4�4 dither matrix shown in Figure A4.3 is based 
on a pan-diagonal magic square or ‘nasik’ in which any 
pair of adjacent cells (horizontal, vertical or diagonal) 
do not contain sequential numbers. In this case all 32 
four-element groups within the matrix (that is, four 
columns and rows, eight diagonals—including broken 
diagonals such as [3+5+12]+[10]) and sixteen 2�2 
squares—all sum to 34 (Lippel and Kurland, 1971). This 
pattern avoids horizontal, vertical and diagonal line 
structures within the dither or across two adjacent 
dithers as illustrated in Figure A4.4.

The final result of applying dithering and inverse 
mapping to the complementary primaries results in 
the ability to plot apparently continuous tone imagery 
on inkjet technology. This operation is demonstrated 
in Figure A4.5.

Figure A4.4 Formation of a balanced dither matrix

The 4�4 matrix above is based on a ‘nasik’: all groups of four 
adjacent cells, both within one dither and across adjacent 
dithers, sum to the same value.

Source: Harrison and Jupp (1990) Figure 37

Figure A4.5 Colour representation using dithering techniques with a 2�2 dither.

The inverse intensity values of three channels are assigned to the subtractive primaries then plotted using dither matrices.
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Appendix 5  
Filters

The use of spatial filters is introduced in Volume 2C. The following sub-sections detail a range of filters that 
have been used effectively with EO imagery:

 § averaging filters—used to smooth imagery (see 
Appendix A5.1);

 § directional filters—for edge enhancement, 
including exposure, insolation and curvature (see 
Appendix A5.2); and

 § derivature filters—commonly used for geophysical 
applications (see Appendix A5.3)

A5.1 Averaging Filters
Balanced average filters are formed from B-spline 
formulae to ensure a smooth graduation of weighting 
values (Jupp 1976). For example, a good 3�3 filter is 
generated from the function:

as the outer product with its transpose. Larger 
filters are convolution products of the smaller 
ones (see Volume 2C—Section 3). For all sizes, the 
sum of all weighting values is used as a divisor to 
preserve scaling. A set of example filters is shown in 
Figure A5.1.

Background image: High resolution aerial image of soak wells at Maddington, WA, acquired on 1 November 2017. Source: © EagleView
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Figure A5.1 Averaging filters

a. 3�3 filter with divisor 36

1 4 1

4 16 4

1 4 1

b. 5�5 filter with divisor 256

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

c. 7�7 filter with divisor 9,216

1 8 23 32 23 8 1

8 64 184 256 184 64 8

23 184 529 736 529 184 23

32 256 736 1024 736 256 32

23 184 529 736 529 184 23

8 64 184 256 184 64 8

1 8 23 32 23 8 1

d 9�9 filter with divisor 589,824

1 16 76 176 230 176 76 16 1

16 256 1216 2816 3680 2816 1216 256 16

76 1216 5776 13376 17480 13376 5776 1216 76

176 2816 13376 30976 40480 30976 13376 2816 176

230 3680 17480 40480 52900 40480 17480 3680 230

176 2816 13376 30976 40480 30976 13376 2816 176

76 1216 5776 13376 17480 13376 5776 1216 76

16 256 1216 2816 3680 2816 1216 256 16

1 16 76 176 230 176 76 16 1

e. 11�11 filter with divisor 58,982,400

1 32 237 832 1682 2112 1682 832 237 32 1

32 1024 7584 26624 53824 67584 53824 26624 7584 1024 32

237 7584 56169 197184 398634 500544 398634 197184 56169 7584 237

832 26624 197184 692224 1399424 1757184 1399424 692224 197184 26624 832

1682 53824 398634 1399424 2829124 3552384 2829124 1399424 398634 53824 1682

2112 67584 500544 1757184 3552384 4460544 3552384 1757184 500544 67584 2112

1682 53824 398634 1399424 2829124 3552384 2829124 1399424 398634 53824 1682

832 26624 197184 692224 1399424 1757184 1399424 692224 197184 26624 832

237 7584 56169 197184 398634 500544 398634 197184 56169 7584 237

32 1024 7584 26624 53824 67584 53824 26624 7584 1024 32

1 32 237 832 1682 2112 1682 832 237 32 1
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A5.2 Directional Filters
Various edge enhancement filters are presented in 
Volume 2C. Some additional directional filters are 
given below.

Prewitt (1970) suggests a bi-Laplacian operator 

(a fourth derivative bidirectional filter: ) as:

This 3�3 implementation of the operator is not 
recommended as its own spatial frequency is quite 
abrupt and would cause ‘ringing’ in the processed 
image. A set of second derivative filters with 
directional properties is shown in Figure A5.2.

Various directionally selective filters have been used 
to detect edges. These generally rely on the eight 
compass directions (North, North-east, East, South-
east, South, South-west, West, North-west), which can 
be easily aligned with the image grid. These filters 

can be applied in sets of eight with the maximum 
(absolute) filtered value being selected as the output 
value and the direction associated with the selected 
filter being the edge direction.

Frei and Chen (1977) defined a set of directional, 
edge-detecting filters with the weights shown in 
Figure A5.3, where a=√2 (listed as anti-clockwise 
from north).

The Sobel and Prewitt operators could similarly be 
implemented in these eight directions by using a 
value of ‘a’ equal to 2 or 1 respectively. Another set of 
directional filter weights proposed by Prewitt (1970) 
are shown in Figure A5.4.

Kirsch (1971) defined a slightly different set of 
directional filters (see Figure A5.5).

Any of these filters could be used individually to 
enhance the edge information towards a particular 
direction. The exposure transformation (see Volume 2C 
and Appendix A5.2.1) implements directional filtering 
of imagery from a selected compass direction.

Figure A5.2 Derivative filters

Figure A5.3 Directional, edge-detecting filters

a=√2
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Figure A5.4 Directional filters

Figure A5.5 Kirsch directional filters

A5.2.1 Exposure
As detailed in Volume 2C—Section 6.3, the exposure 
transformation uses two smoothing, differentiating 
filters to compute the exposure of each ‘pixel’ to a 
selected direction. The 3�3 smoothing derivative 
filters, with divisor 12 and offset 127, are defined as:

These are the product of a B-spline filter:

and a central difference filter:

A5.2.2 Relief shading
To produce an relief shading filter, two differential 
filters are used to compute the first derivatives in two 
directions: along-line (X) and down pixel columns (Y) 
(see Volume 2C). These filters are the product of a 
B-spline filter:

1 4 6 4 1

(divisor 16), with a central difference filter:

-1 -2 0 2 1

(divisor 8).

The 5�5 average filter shown in Figure A5.1b may 
be applied to the elevation channel before using 
differential filters.

 filter with divisor 128:

-1 -4 -6 -4 -1

-2 -8 -12 -8 -2

0 0 0 0 0

2 8 12 8 2

1 4 6 4 1



Earth Observation: Data, Processing and Applications. Volume 2: Processing Volume 2X: Processing—Appendices

Appendix 5  

37

 filter with divisor 128:

1 2 0 -2 -1

4 8 0 -8 -4

6 12 0 -12 -6

4 8 0 -8 -4

1 2 0 -2 -1

A5.2.3 Curvature
Three differential filters are used in the microBRIAN 
Curvature transformation to compute the second 
derivatives in three directions: along-line (X) and 
down pixel columns (Y) and along the diagonal (XY) 
(see Section 12.9). The X and Y filters are the product 
of a B-spline filter (divisor 96):

1 8 23 32 23 8 1

with a second derivative filter (divisor 4):

1 2 -1 -4 -1 2 1

The XY  filter is formed as the outer product of the 
first derivative filter (divisor 4):

-1 -4 -5 0 5 4 1

with its transpose.

 filter with divisor 1536:

1 8 23 32 23 8 1

2 16 46 64 46 16 2

-1 -8 -23 -32 -23 -8 -1

-4 -32 -92 -128 -92 -32 -4

-1 -8 -23 -32 -23 -8 -1

2 16 46 64 46 16 2

1 8 23 32 23 8 1

 filter with divisor 1536:

1 2 -1 -4 1 2 1

8 16 -8 -32 46 16 8

23 46 -23 -92 -23 46 23

32 64 -32 -128 -92 64 32

23 46 -23 -92 -23 46 23

8 16 -8 -32 46 16 8

1 2 -1 -4 23 2 1

 filter with divisor 1024:

-1 -4 -5 0 5 4 1

-4 -16 -20 0 20 16 4

-5 -20 -25 0 25 20 5

0 0 0 0 0 0 0

5 20 25 0 -25 -20 -5

4 16 20 0 -20 -16 -4

1 4 5 0 -5 -4 -1

The Laplacian can be computed in the curvature 
transformation as the average of the second derivatives 
in X and Y. A Laplacian filter that is equivalent to this 

operation can be derived from the  and  filters 
given above:

1 5 11 14 11 5 1

5 16 19 16 19 16 5

11 19 -23 -62 -23 19 11

14 16 -62 -128 -62 16 14

11 19 -23 -62 -23 19 11

5 16 19 16 19 16 5

1 5 11 14 11 5 1
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A5.3 Geophysical Filters
For geophysical applications, Fuller (1966) reports 
a number of derivative and other filters (including 
second and fourth vertical derivations, residual 
and analytic continuation), which implement useful 
frequency filters in the spatial domain. Several 
derivatives (or ‘residuals’) of geomagnetic fields were 
proposed by Henderson and Zeitz (1949) to highlight 
magnetic anomalies. Their equations 10, 13 and 15 
were represented as spatial filters by Fuller (1966).

Peters (1949) computed second and fourth 
derivatives of magnetic data. Second derivative 
equations for interpreting gravity data were reported 
by Elkins (1951). Rosenbach (1953) also proposed 
equations for computing the second vertical 
derivative from gravity data.
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Appendix 6  
Matrix Algebra

An excellent explanation of various mathematical analyses, including matrix algebra, is given in Sawyer (1955). 
Unlike most mathematical texts, this unique account was specifically written to interest people in mathematics 
and exposes various branches of the subject using lucid, commonplace examples and only assumes ‘a 
confused recollection of School Certificate mathematics’.

Using material from this source, Appendix A6.1 
describes the operation of matrices in terms of 
their geometric effects on image spaces. Some 

characteristics of matrix algebra which may be used 
for representing specific geometrical transformations 
are detailed in Appendices A6.2 and A6.3.

A6.1 Geometric Effect of Matrix Operations
The geometrical effect of the general matrix:

on the image data space can be understood using 
example points along the X and Y axes. In Figure A6.1, 
we use three equally spaced points on each axis: P, Q 
and R on the X axis and U, V and W on the Y axis. The 
matrix operation then creates two new axes X ,́ where 
the three X axis points have been moved to P ,́ Q´ and 
R ,́ and Y ,́ where the Y axis points are now located 
at U ,́ V´ and W .́ Because this is a linear operation, 
straight lines remain straight and parallel lines remain 
parallel. For geometrically representable operations, 
the matrix coefficients can be simply determined as 
the transformed values of the points P (that is a,c at 
P )́ and U (namely b,d at U )́, that is:

For example in Figure A6.1 the original coordinates of 
P (1,0) are transformed to the values (a,c) at P .́

Image data axes may be reflected about any line L by 
the matrix coefficients:

where a is the angle (in degrees) between L and the X 
axis (see Figure A6.2). For:

Y=X
a=45°

then

2a=90°
sin 2a=1
cos 2a=0

to produce the coefficients used in the example of 
Figure A6.3.

Background image: High resolution aerial image of aluminium works at Kwinana, WA, acquired on 11 January 2018. Source: © EagleView
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Figure A6.1 Effect of matrix operation on data geometry

The transformation from X,Y to X ,́Y ćan be described by the matrix equations: X =́ aX + bY and Y =́ cX + dY.

Source: Harrison and Jupp (1990) Figure 108

Figure A6.2 Reflecting axes

X =́ cos 2aX + sin 2aY

Y =́ sin 2aX – cos 2aY

Source: Harrison and Jupp (1990) Figure 109

Linear rescaling of image values (see Volume 2A 
and Figure A6.4) can be simply implemented by 
multiplying X and/or Y values by some constant 
value(s). This can be represented by the matrix:

where, if m = n, then both X and Y channels are 
being rescaled by the same amount. A special case 
of channel rescaling involves inverting the channel 
values (that is, changing a positive increasing order to 
a negative decreasing order). This can be effected by 
using m and n values equal to -1. In image processing, 
an offset value would usually need to be applied to 
this result to preserve positive pixel values.

By three methods we may learn wisdom:  
First, by reflection, which is noblest;  

Second, by imitation, which is easiest; and  
Third by experience, which is the bitterest. 

(Confucius)



Earth Observation: Data, Processing and Applications. Volume 2: Processing Volume 2X: Processing—Appendices

Appendix 6  

41

Figure A6.3 Reflecting axes about the line Y=X

a. Original axes b. Reflected axes

Source: Harrison and Jupp (1990) Figure 85

Figure A6.4 Rescaling axes

X =́ mX

Y =́ nY

Source: Harrison and Jupp (1990) Figure 110
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Rotation of the image data space (actually a 
combination of skewing and scaling) can be 
represented by the matrix:

where q is defined as the clockwise angle between X 
and X (́see Figure A6.5). Some special cases of this 
operation are:

 § q =90°, cosq =0 and sinq=1, which produces a 
matrix of reflection about Y=X ẃith inverted scaling 
in X ;́ and

 § q =180°, cosq =-1 and sinq =0, so the rotation 
matrix simply inverts scaling on both the X ánd Y´ 
axes.

A skewing operation in the X direction as illustrated in 
Figure A6.6 can be represented as the matrix:

Figure A6.5 Rotating axes

X´ = cos qX – sin qY

Y´ = sin qX + cos qY

Source: Harrison and Jupp (1990) Figure 111

Figure A6.6 Skewing axes

X´ = X + kY

Source: Harrison and Jupp (1990) Figure 112
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A6.2 Matrix Arithmetic and Properties
A Zero matrix (all elements equal to 0) is defined as:

For a 2�2 matrix, this would be:

A Unit or Identity matrix (all diagonal elements are 1 
and off-diagonals equal 0) is represented as:

For a 2�2 matrix, this would be:

For two 2�2 matrices:

A6.2.1 Trace
The Trace of a matrix equals the sum of its diagonal 
elements:

Trace (A) = a+d

A6.2.2 Matrix equality
A=B

only if:

a=p; and
b=q; and
c=r; and
d=s.

A6.2.3 Matrix addition

A6.2.4 Scalar multiplication
For a constant n:

A6.2.5 Matrix multiplication

Note: matrix multiplication is not commutative: AB is 
not equal to BA.

A6.2.6 Transpose of a matrix

A6.2.7 Additive inverse of a matrix

A6.2.8 Multiplicative inverse of a matrix

If (ad–bc) is not equal to 0, then A is called an 
orthogonal matrix and

If ad–bc equals 0, A is called a singular matrix and A-1 
does not exist.

(ad–bc)

is called the determinant of A, and

is called the adjoint of A.
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A6.2.9 Determinant of a matrix
In Figure A6.1, we applied a matrix to a set of points 
located on the X and Y axes. The effect of moving 
points P, U and S changed the shape of a unit square 
to that of a parallelogram. The dimensions of this 
parallelogram are described in Figure A6.7. The area 
of this parallelogram equals the determinant of A and 
can be computed as:

Since this Figure originated from a unit square 
(area 1), the determinant represents the change in 
area caused by the matrix operation. The determinant 
is usually written as:

Figure A6.7 Effect of matrix operation on unit area

The area of a parallelogram resulting from a matrix operation 
is described by the determinant of the matrix. In this case the 
determinant equals ad–bc. For a 2�2 matrix this is defined as 
the ratio in which the matrix changes areas (see Figure A6.1).

Source: Harrison and Jupp (1990) Figure 113

For a 2�2 matrix, the is defined as the ratio in which 
the matrix changes area. The determinant of a 3�3 
matrix is defined as:

and represents the constant ratio in which the matrix 
changes volume in a three-dimensional data space. 
The concept can be used with higher-dimensional 
dataset although the geometric process cannot be 
visualised.

The determinant is a useful summary of many matrix 
characteristics such as:

These operations can be used to determine the 
overall data scaling action of a sequence of matrix 
transformations on a dataset. The reflection, rotation 
and skewing operations described above do not alter 
the area of the dataset so have determinants equal 
to one in magnitude. The reflection transformations, 
however, all have negative determinants which 
characteristically indicates that there is a reversal of 
axes involved with such matrices. For example, the 
skewing operation can be represented as:

and

or

so does not change area.
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Figure A6.8 Effect of singular matrix operation

A matrix whose determinant equals zero represents an operation which collapses a two-dimensional area to one dimension (see 
Figure A6.7). In this example, point C is collapsed onto O and point A is collapsed onto point B.

a. Original area b. Two dimensional area collapsed to one dimensional line

Source: Harrison and Jupp (1990) Figure 114

Finally a special property of some matrices is that 
their determinant value is zero. Such matrices are 
called singular and operate by collapsing areas in the 
data space into lines (of zero area) as illustrated in 
Figure A6.8. In image processing, this matrix operation 
loses a dimension so effectively ‘destroys’ data.

A6.2.10 Characteristic equation
The Characteristic Equation of any square matrix A is:

or

or

Thus

A6.2.11 Eigenvalues of a matrix
The eigenvalues of a matrix are defined as the 
solutions of its characteristic equation. The 
eigenvalues k of matrix A may be written as:

where

r
1
 and r

2
 are points representing a vector (called the 

eigenvector) from the origin of the original coordinate 
system, then

or

that is

Solutions of this equation are:

and
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A6.2.12 Eigenvectors of a matrix
The eigenvectors r of matrix A are defined by:

and

where

k
1
 and k

2
 are the roots of the characteristic 

equation (also called the eigenvalues).

A6.3 Derivation of the Principal Components Transformation
In an image X, the covariance of channels j and k is 
defined as:

where

n is the total number of pixels in the image
 is value for pixel k in channel i;

 is the mean of pixel values in channel i;
 is value for pixel k in channel j; and

 is the mean of pixel values in channel j.

see Volume 2A—Section 8.1.4). The covariance matrix, 
C

x
 , can be defined as:

or

As defined in Volume 2C, a PCA (Principal 
Components Analysis) image has a diagonal 
covariance matrix, that is all off-diagonal elements 
are zero. The PCA image Y can be computed from the 
image X by a rotation transformation P where:

The covariance matrix of a PCA image Y can be 
similarly defined as:

By substituting the equation relating Y and X we get: 

Since C
y
 is diagonal, its diagonal elements can be 

defined as the eigenvalues of C
x
 and the rows in 

the orthogonal matrix P are the eigenvectors of C
x
 

(Gonzalez and Wintz, 1977). The trace of C
x
 also 

equals the trace of C
y
.

The eigenvalues k can be computed as defined in 
Section A6.2.10 above, that is:

For the example image from Volume 2A (see 
Figure A6.9), the covariance matrix is:

Figure A6.9 Example image channels

Source: Harrison and Jupp (1990) Figures 41
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The eigenvalues of the matrix are derived as:

or

which gives eigenvalues of 5.1, 4.5 and 0.3. The 
covariance matrix of Y can then be written as:

The trace of this matrix (5.1+4.5+0.3) equals the trace 
of C

x
 (2.938+4.72+ 2.2656). The percentage variation 

accounted for by each principal component (PC) can 
be determined using the equation:

The variance and percent variation results are shown 
in Table A6.1.

A noise-to-signal ratio (NSR) percentage summarises 
the variance of a component j relative to those 
components above it:

where 

n is the number of components; 
j is the selected component for NSR; and
i is the component number.

Table A6.1 Principal component percentage variation

PC Variance Percentage

1 5.1 51.8

2 4.5 45.5

3 0.3 2.7

Total 9.9 100

This can be used to identify the number of data 
dimensions, or rank, of the image matrix. Typically 
useful dimensions have a high variance value and 
‘noise’ components have low variance so the number 
of data dimensions can be determined from the 
component with the minimum noise to signal ratio 
value. (This ratio is generally observed as a trend of 
decreasing values through the data components then 
marginally increasing in the noise components.) For 
example, in an eight channel image we have eight 
components a, b, c, d, e, f, g, h in which the variances 
of (a, b, c, d, e) are much greater than the variances 
of components f, g and h. The NSR % at component e 
can be computed as:

Since the variance of f is much smaller than that of 
e, this percentage will be larger than the NSR % at 
component f:

If the variances of f, g and h are all small relative 
to components a to e, the NSR % at g and h will 
be marginally larger than f since a similarly small 
numerator is being divided by a slightly smaller 
denominator (the additional noise channel reduces 
the arithmetic mean).

The eigenvectors of C
x
 can also be computed to form 

the rows of the transformation matrix P :

using the equations:

For k
1
 this expands to the three simultaneous 

equations:
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Similarly, two more sets of three equations can be 
generated by substituting the values of k

2
 and k

3
. 

Since matrix A must be orthogonal (AT = A–1), the 
eigenvectors are also normalised such that:

For our example, the final transformation matrix is 
computed as:

As detailed in Volume 2C, this matrix can now be 
used to rotate the data space of image X to the 
uncorrelated PCA image space. This is implemented 
by the equations:

The determinant of this matrix can be computed using 
the equation given in Appendix A6.2.9:

which indicates that there is a reversal of axes 
involved with the transformation but no change in the 
‘area’ occupied by the data.

The degree of correlation of each channel i with each 
principal component j can also be determined using 
the equation (Short, 1982):

to give the normalised matrix:

The elements of this matrix indicate the degree of 
correlation between the original channels and each 
PC. For example, channels a and c are strongly 
correlated with PC1 (0.8307 and 0.7604 respectively) 
while channel b is negatively correlated with PC1 
(-0.6109) and more strongly correlated with PC2 
(0.7875).
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Appendix 7  
Predictive Error and Variance

A7.1 Predictive Error for Least Squares
The predictive error (or Predictive Residual Error 
Sum of Squares, PRESS) described below is the 
one defined by Allen (1974) and is a variation on the 
‘Jacknife’ statistic discussed in Tuckey (1967).

The Least Squares (LS) situation for fitting 
transformation models by LS can be written by 
defining the error at Ground Control Point (GCP) ‘i’ as:

where  is the vector of ‘monomials’ evaluated at the 
i’th GCP (x

i 
,y

i
) in the ‘from’ coordinate system,  is 

the vector of coefficients and  is the coordinate (x or 
y) being predicted in the ‘to’ coordinate system (see 
Volume 2B).

If there are M GCPs then the complete expression for 
the residuals at the GCP points is:

The LS solution vector  minimises the sum of 
squared residuals or vector ‘norm’:

The solution is well known and can be written in this 
notation as:

The consequent estimate for the error called the 
Residual Mean Square error (RMS) error is:

where RSS is termed the Residual Sum of Squares, 
which is not normalised by the number of 
observations M.

For reasons that will become clearer in the following 
we will denote the matrix:

The (symmetric) matrix H is a special matrix in that 
powers of H simply result in H again as is the case 
with (I-H). It follows that the RSS can be written:

which simply expresses the ‘analysis of variance’ 
associated with LS of the total Sum of Squares (TSS) 
into the sum of Model Sum of Squares (MSS) and 
Residual sum of Squares (RSS).

The ‘Predictive’ error is developed by noting that the 
errors at the GCPs after the model is fitted are too 
small as estimates for the actual statistical error. This 
comes about as they are used to fit the model. The 
consequent bias in the RMS is more than the normal 
allowance for the model degrees of freedom to obtain 
the estimated variance (EVAR) as in:

(where p is the order of the model) will allow.

As an alternative and unbiased estimate of the error, 
if each GCP is removed from the model fit in turn 
and the error between the point removed and its 
prediction by the fitted model without its influence 
is used in place of the LS error at that point then the 
Predictive Error (PRESS) is obtained.

Background image: High resolution aerial image of Perth airport, WA, acquired on 3 May 2017. Source: © EagleView
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The method is really a variation of retaining some 
points as ‘test points’ and some as ‘training points’. 
However, the existence of the test points is always a 
problem in such a scheme in that people wish to use 
all of the information they have to train and to test. 
The Predictive Error is a good compromise.

Let us write for the predictive error at the i’th GCP:

where  is the set of model parameters obtained if 
the point  is not used to fit the model. Then:

It may seem that this quantity involves M LS solutions 
and is quite messy. However, it turns out that the 
result is immediately available following the LS 
solution since:

where  is the full LS residual obtained above and  
is the i’th diagonal element of the matrix H above.

The proof of this result can be found in Golub et al. 
(1979) but is easily and usefully derived as follows:

 § noting that we can write the components of the LS 
solution as:

 § it follows that we can express the i’th component of 
the PRESS as:

where:

 § with the help of the well-known Sherman-Morrison 
formula (Sherman and Morrison, 1949) for (in this 
case) a non-singular and symmetric matrix, H:

 § it follows with a little manipulation that:

so that

QED
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A7.2 Generalised Cross-Validation (GCV)
Golub et al. (1979) favoured the Generalised Cross-
Validation or GCV statistic over PRESS because they 
say that PRESS is not ‘rotation invariant’. Perhaps this 
is not a vital characteristic of a statistic to have as I 
believe PRESS is an excellent tool that is sensitive to 
the distribution of the GCPs. This is the main reason 
for its use.

However, for completeness and because GCV is used 
to resolve ‘ties’ in the modelling described here, the 
GCV needs to be derived as well.

We have seen above that PRESS can be written as:

The GCV obtained by writing:

It has a similar nature to PRESS but does not 
separately weight the points. This can be a 
disadvantage when the location of sensitive points 
and their stability to outlier data is being assessed as 
well as simply fitting data.

Both PRESS and GCV have the property that as 
the model order increases the fit becomes less 
stable and the statistics (as expressed by how close 

 is to zero) increase the errors. As the model 
order increases, RMS and RSS will both continue to 
decrease. PRESS and GCV are therefore commonly 
used to choose the ‘best’ model order as described in 
this report.

 [NOTE: The microBRIAN program Model used PRESS 
to help select the ‘best’ order of model to use. The 
SIEVER model (see Appendix 8 below) also has a 
calculation for the value of  to help identify points 
where errors will have greatest effect on the LS 
solution. These points can be the best to use if GCPs 
are accurate but also the worst to use if GCPs are 
inaccurate.]

A7.3 Singular Value Decomposition
The Singular Value Decomposition (SVD; Lanczos, 
1958) provides a convenient method to solve the LS 
problem and also derive PRESS or GCV.

The SVD of the M row by N column matrix A is the 
(unique) decomposition of the matrix into factors such 
that:

where U and V are ortho-normal and S is a diagonal 
matrix such that:

The p�p matrix V is the eigenvector matrix for  
and the squares of the singular values (s

j 
) are the 

eigenvalues. The M�p matrix U consists of the first p 
columns of the eigenvector matrix for .

If the matrix has Rank ‘q’ (<p) then:

Also, if  is the j’th column of U and  is the j’th 
column of V then the SVD can also be written as:

The famous theorem of Eckert and Young (1936) 
concerning the approximation of a matrix A by a 
matrix B of lower rank is provided with a solution 
by the SVD in that the best approximation to A by a 
matrix B of rank q<p in the sense of minimum square 
norm is simply:

The SVD can be used to define a ‘generalised inverse’ 
for the matrix A such that:
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The relationship with LS is that when the matrix A is 
the LS matrix above:

where in this case the columns of the matrix U are 
reduced to those corresponding to non-zero singular 
values. It follows that h

ii
 may be easily derived if the 

SVD is used to solve the LS problem since:

The SVD is also used to check that LS solutions 
are ‘well posed’ in that singular values are either 
zero or not ‘close’ to zero. Near-zero singular values 
correspond to unstable parameters. Various methods 
exist to modify the LS equations (often called ‘ridge’ 
regression) to provide more stable (but biased) 
solutions. These will not be pursued here.

A7.4 Predictive Variance
Predictive Variance (PV) is a related but different idea 
of the variation away from control. In this case, the 
resulting equation expresses how the model may vary 
at places away from the control due to the variation 
we know is in our estimate of the model parameters.

We can consider that the data vector values  may 
have a variance, which we can estimate from the 
residual errors or (better) the PRESS. We will assume 
(although mainly because it is rare to have enough 
information to do otherwise —the expressions can 
be derived under different knowledge) that the error 
model is:

Even accepting that the LS model predicted data 
values are an estimate for  there will be an expected 
variation around the model parameters ( ) with 
mean zero and variance:

The variation of the model in the ‘to’ coordinate 
system at a point predicted from the point (x,y) in the 
‘from’ system is therefore:

The function  is related to the Predictive Error 
above since at the GCP points:

The function  may be plotted over the ‘from’ 
space coordinate system to indicate how variations 
may increase away from control. To allow for the 
possibility of higher order models being present this 
is often done using PRESS for the data variance and 
a higher order of model than the one used for the 
fitting. Areas of high predictive variation are ones 
where more control should be obtained if possible.
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Appendix 8  
‘Sieving’ Outliers

A8.1 Basic Assumptions and Framework
This Appendix explains the basis for an approach to 
identifying outliers in spatial datasets used for EO 
image registration (see Volume 2B). Typically such 
spatial datasets are either a pair of EO images to be 
coregistered, or an EO image and its corresponding 
map data, but may also involve more than two 
datasets. In the microBRIAN image processing system 
(Harrison and Jupp, 1992), the program SIEVER 
implemented this approach and the following sub-
sections describe it in terms of the functionality of the 
SIEVER model.

The context of this approach is that there exists an 
image or a number of images (perhaps overlapping 
frames or the same area at different times) and a 
map base or coordinate system within which they 
will be referenced. Clearly identified points (GCP or 
Ground Control Points) are selected pairwise between 
the spatial datasets as accurately as possible. This 
may be done manually or by computer (such using a 
correlation program). In the case of the identification 
of positions from a map base it is generally necessary 
to manually identify the GCP (see Volume 2B).

For this approach, it is necessary that each identified 
feature have a unique identifier so that a given feature 
can be located in all of the images to be coregistered, 
or to the map base frame. This may be accomplished 
simply by associating a separate list of GCP with each 

image or map base and associating each record in 
the file with a unique spatial feature. In this way, if a 
feature is not present in one dataset, its location in 
the associated file is empty. If this or a similar method 
of identifying features across multiple images is 
available then the GCP that are common to all of a 
group of images can be identified quickly.

This method also assumes that major geometric 
distortions have been ‘nominally’ removed from EO 
imagery, that is, panoramic distortion and other 
artefacts created by the geometry of the EO sensor 
viewing perspective and acquisition method have 
been taken into account in the coordinates of the 
image GCP. The remaining geometric differences 
between the spatial datasets should then be 
accounted for (or well described) by an ‘affine’ 
transformation. An affine transformation is linear such 
that if one image has coordinates (x,y) and the other 
(x ,́y )́ then the relationship between the coordinates 
has the form:

This six parameter transformation can be thought 
of as some combination of shift of origin, rotation, 
skew and possibly a separate ‘stretch’ in the x and y 
directions (see Appendix 6 above and Volume 2B).

A8.2 Fitting Transformation Models
For any pair of spatial datasets there can be 
transformations from each coordinate system to 
the other. If all of the transformations have been 
determined then any feature in one dataset can be 
located in each of the others. In the case where all of 
the transformations can be represented by a simple 
affine transformation then if the transformation is 
exactly known in one direction it can be inverted to 
obtain the transformation in the other direction.

However, transformations are never known exactly. 
Normally, the GCP are used to estimate the 
coefficients by least squares or some other measure 
of goodness of fit between the original coordinates 
and those predicted by the transformation. The GCP 
are normally subject to error or ‘noise’ and in this 
process any outliers present will play a disturbing role.

Background image: High resolution aerial image of sluice dam at Karratha, WA, acquired on 19 July 2018. Source: © EagleView
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There will always be some error or noise level that 
limits the accuracy of location of the GCPs and 
therefore also limit the accuracy of the estimated 
coefficients of a transformation. However, ‘outliers’ 
are points that are inaccurate well beyond this base of 
error or ‘noise’.

When the transformation is being estimated it is usual 
to suppose that errors in GCP are only in those of the 
‘TO’ side of the transformation. That is in the affine 
transformation above we are calling the (x,y) data the 
FROM side of the transformation (or the coordinates 
the transformation acts on) and the (x ,́y )́ data the 
TO side of the transformation (or the coordinates 
produced by the action of the transformation). In 
this case, assuming the errors are uncorrelated, it is 
possible to separate the fit to the x and y components 
of the TO side as:

and

where  and  and noise variances and the 
coefficients can be efficiently found by two separate 
least squares solutions.

However, the errors usually occur in both the FROM 
and the TO coordinate systems—a fact that is utilised 
when the inverse transformation is estimated—
where the errors are then assumed to be only in the 
FROM side of the transformation. In the case of an 
affine transformation it is possible to solve for the 
coefficients assuming errors in both variables—but 
only with a simplified error model. This solution is a 
by-product of the work described here and will be 
described in passing.

The more significant issue, however, relates to outliers. 
In this case, if the outlier is in a GCP that is on the 
FROM side of the system then it is difficult if not 
impossible to actually identify the outlier. Its presence 
is often only indicated by a very poor fit to the data. 

Moreover, if the outlier is on the TO side of the system 
then because least squares balances all errors it is likely 
the fit to the outlier will be better than to other data.

The situation where the outliers are strongly fitted 
by the model—and hence very difficult to identify 
as outliers—is closely related to a concept called 
‘predictive error’ (see Appendix 7 above). The 
predictive error is the error at a point between the 
data and the model prediction based on all data 
except the point in question (see Volume 2B—
Section 4). Conversely, it measures the sensitivity of 
the model to the data at the point or the degree of 
control that the data point exerts on the model. The 
sensitivity can be expressed as a ‘predictive error 
multiplier’ which will be large if the model is very 
sensitive to the presence of a data point.

High predictive error multipliers are both good and 
bad. A high value indicates a very important point in 
the modelling—or one that exerts a lot of influence 
over the model. However, such points are also the 
ones that introduce the greatest effects of error and 
when they are an outlier the effect can be very great 
but the actual error at the point is usually small—
since the model fits the outlier in preference to other 
points!

The SIEVER algorithm implements three analyses:

 § solves for the affine model without assuming the 
errors are all on one of the FROM and TO sides of 
the transformation model;

 § estimates the predictive errors of the residuals as 
one means of identifying outliers; and

 § plots the squares of the errors (which would have 
a Chi-square distribution if they were from a 
normal population or errors) against the Gamma 
distribution in what is called a Q-Q (or Quantile-
Quantile) plot (see Volume 2B—Section 4). This 
also allows errors that are too large to be explained 
as simply large but still possible error values to be 
identified.

A8.3 The SIEVER Model
The SIEVER model assumes there is a set of N

v
 

spatial datasets with M common GCP as identified 
by their individual GCP files. These GCP sets can be 
represented as a matrix with M rows and 2N

v
 columns:

(where the curled underscore indicates a column 
vector), which is the starting point for the analysis.

Because we have assumed that nominal geometric 
transformations have been carried out on the data to 
remove the major image distortions (see Volume 2B—
Sections 2 and 3) and that the relationships between 
the images can (in the absense of noise) be modelled 

as affine transformations, the situation is one of the 
Generalised Linear Model (GLM) or Factor Analysis. 
That is, we are assuming that there is an underlying 
coordinate system  such that for each of the 
image coordinate systems we have:

and

where  are the errors in the coordinates 
and (m

k
,ν

k
) are the M common (and transformed) 

coordinates.
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We are going to assume for convenience that the 
images coordinates have had the means extracted 
from them so that the data have ‘zero mean’. The 
underlying coordinates will also be assumed to have 
‘zero mean’. In this case it is possible to express the 
form of the underlying transformation as:

It follows that we could express the matrix A in the 
form:

where E is the matrix of random errors or ‘noise’. That 
is, The underlying model is one where A has basic 
rank 2 or A is the product of a matrix of size M�2 and 
one of size 2�2N

v
.

A8.4 Solving for Underlying Model and Errors
To separate the underlying model from the errors we 
will use the theorem of Eckart and Young (1936) which 
states that the best approximation to a matrix by one 
of lower rank can be conveniently found using the 
Singular Value Transformation (SVD) of the matrix. 
The SVD (introduced by Lancos, 1958) provides an 
eigenvalue decomposition for an arbitrary matrix. That 
is, if A is any M�N matrix then there exist matrices U 
(M�N), S (N�N and diagonal) and V (N�N) that satisfy 
the conditions:

Since, using these rules we have that:

it follows that the squares of the singular values are 
the eigenvalues of  and the matrix V is the matrix 
of its eigenvectors. An alternative way to write the 
SVD is in terms of the column vectors of U and V in 
the form:

The Eckert-Young theorem can be stated in the 
way used here in the following form. If B is the best 
approximation to A by a matrix of rank p<N where 
‘best’ means in the sense of minimising the sums of 
squares of differences between all elements of the 
matrices then:

As with many cases of least squares there is an 
Analysis of Variance (AOV) for this generalised 
system in the form:

or

where TSS stands for the Total Sum of Squares, MSS 
the Model Sum of Squares and RSS the Residual Sum 
of Squares.
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Of special interest to us is the AOV for a single row of 
each matrix. Let the i’th row of a matrix be denoted 
by . It is a row vector that will, in this case, have N 
components. Then:

or

From this (or directly) it can be seen that 

It is easy to see that in our specific case, where 
p=2 and N as used above is actually 2N

v
 then the 

corresponding solution to the SIEVER model is:

Because of the orthonormal properties of V it 
therefore follows that the AOV above on US is a 
direct analysis of the errors between the underying 
two-factor model of the GCP and the selected GCP. 
Moreover, the row AOV above is an analysis of each 
row or identifiable spatial feature and our objective 
is to isolate the outliers to the features and images in 
which they occur.

Note that these steps have overcome the very serious 
problems that can occur if it is assumed that the 
errors are all in one ‘side’ of the equations. However, 
we still have a difficulty in that least squares ‘spreads’ 
error across all the points and can be dominated by a 
few points with strong ‘control’. If these points are also 
outliers then their identification can be very difficult. 
In many cases the best tool to use is the human 
eye and so in the following there will be a number 
of suggested plots that are sometimes much more 
decisive than the accompanying statistics!

A8.5 Analysing the SIEVER Solution
The first action in SIEVER is to normalise the matrix 
A so that the columns have zero mean and the sum of 
squares of the columns is 1.0. In this case, the matrix 

 is in ‘correlation’ matrix form.

The value of the normalisations is twofold:

 § firstly, as noted above, the formulation is more 
convenient when the columns have zero mean; but

 § secondly, the normalisation frees the data of scale 
changes that different coordinate systems may 
have.

The SVD of the matrix is then formed to obtain the 
components discussed above.

A8.5.1 Basic ‘PCA’ summary
The SVD of the normalised matrix A can be 
interpreted as a Principal Component Analysis or PCA 
of A in correlation form (see Appendix A6.3 above and 
Volume 2C).

For each of the N components, a simple set of 
summary statistics comprises

 § the Principal Variance (Pvar);

 § the percent variance (Var%);

 § the Total Variance (Tvar
%); and

 § the Noise to Signal Ratio (as %; NSR%);

each of which is defined by:
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These can be calculated for any PCA or SVD exercise. 
In our case, if the rank of the system is 2, we should 
have the Total variance in the first two components 
as very high and the contribution of the remaining 
components as very low and NSR should reach its 
minimum at k=2.

It may be shown that these statistics are not very 
reliable for only two images and it is better in 
every way if SIEVER is used on a number of images 
in combinations—such as up to five in an initial 
investigation and down to studies of pairs of images in 
final outlier searches.

A8.5.2 Row or feature-based error analysis
The issue, of course, is how to measure what is ‘high’ 
and ‘low’ with regard to the model fit. To help with 
this we can also generate some statistics for the rows 
of A—that is for the spatial features that are being 
mapped as GCP in the images being registered.

For this we will work assuming that the assumption 
of the rank of A (p) being 2 is confirmed by the 
PCA analysis. The consequences of its not being 
true are discussed in subsequent sub-sections. The 
assumption we have from this is that the estimated 
variance of the residual can be written:

For Feature i, the row or feature statistics we can 
generate to help to go on from here are:

 § the Normalised Error ( );

 § the feature Chi-square ( ); and

 § the Predictive Error Weight ( ).

as defined by:

The derivation of the Predictive Error formula and 
its relationship with ‘jackknifing’ is described fully in 
Appendix 7 above.

A8.6 Using the Q-Q Plot
To investigate the distribution of the errors remaining 
after fitting the general affine model, SIEVER uses a 
technique that is very useful from exploratory data 
analysis called Quantile-Quantile plotting (see also 
Volume 2B—Section 4.2.3).

A8.6.1 Quantile-Quantile plot
A Quantile-Quantile (Q-Q) plot is constructed to test 
the statistical distribution of data against a known 
model. A ‘quantile’ is a fraction (which when expressed 
as a percentage is called a ‘percentile’) between zero 
and one. Consider that you have M data values (y

j 
) 

which are sorted into increasing order such that:

Associated with each y
i
 is a estimate of the fraction 

(or quantile) of data values less than or equal to y
i 
. 

This is simply:

Suppose F(x) is the cumulative distribution function 
for a probability distribution function P(x) such that:

The set of x values that satisfy:

are the set of values for which the expected fraction 
of values from a sample of M ‘drawings’ which are less 
than or equal to x

i
 is the quantile q

i
. It follows that if 

the data y
i
 are drawings from the distribution function 

P(x) then the plot of y
i
 against x

i
 for i=1,M will be 

close to a straight line with slope one and intercept 
zero. This plot is the Q-Q plot (see Figure A8.1) and 
tests whether the data values are samples from the 
distribution P(x).
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Figure A8.1 Q-Q plot

a. If actual and estimated chi-square 
values agree for all control points then 
the slope of Q-Q plot equals 1

b. If the slope is greater than 1, then 
some outliers exist in the set of control 
points.

c. If the slope is less than 1, there are too 
few control points.

Source: Harrison and Jupp (1992) Figure 40

A8.6.2 Gamma probability plotting
To test the distribution of the residual errors from 
the SIEVER model, SIEVER uses a general method 
called Gamma probability plotting. This allows the 
distribution to be tested against a family of possible 
distributions, one of which is . The hypothesis is 
that if the residuals are normal or near normal then 
the statistic  defined in the previous section will 
be distributed as Chi-square with (N–p) degrees of 
freedom, or . The cumulative distribution for the 
incomplete Gamma distribution can be defined as:

If x is  then ,  and . It follows 
that if the y

i
 values above are the sorted,  defined 

as in the previous section, and you obtain the values x
i 

by solving:

then the Q-Q Plot of the x
i
 values against the y

i
 values 

should be a straight line with slope one and intercept 
zero (see Figure A8.1a). In SIEVER this is tested by a 
linear regression and associated statistics.

A8.6.3 Interpreting the Q-Q plot
The plot can depart from the ideal for a number of 
reasons. One is that the errors are not normal so the 

 are not distributed as . It is known that for the 
general incomplete Gamma distribution the fitted 
linear regression will have slope  and intercept . 
Also, if the value ( ) for which the data become well 
approximated by a straight line is different from the 
theoretical value, it may mean the effective degrees of 
freedom are different from (N–p).

However, any of these reasons simply relates 
to the distributions and not the extreme events 
that represent outliers. As discussed further in 
Appendix A8.7, outliers are often indicated by very 
high values of the y

i
 data for the high quantiles. In this 

case, the slope is usually much greater than one and 
the intercept large and negative.

Once outliers are detected they should be traced to 
the images where the features have been located and 
checked very closely. Removing points suspected of 
being outliers is not always justified as in any well-
defined distribution there can be large values. SIEVER 
actually provides a good indication of when there are 
too few large errors (which might happen if points 
with large errors are arbitrarily deleted), since in this 
case the Q-Q plot will often ‘flatten’ at the higher 
quantiles indicating there has been truncation of larger 
but still statistically possible errors (see Figure A8.1b).
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A8.7 Data Plots to Indicate Outliers
In addition to the Q-Q Plot, SIEVER provides for some 
other plots that can give some assurance that the 
analysis is working as expected or for the location of 
outliers. These involve listing and plotting columns of 
the matrix US and/or the Error Matrix.

A8.7.1 Listing and plotting the matrix US 
As noted above, the matrix first two columns US 
constructed from the SVD can be identified with the 
modelled ‘underlying’ set of feature coordinates:

The last N-2 columns can be identified as orthogonal 
transformations of the errors between the affine 
model and the data.

If only two spatial datasets are being considered, there 
will be two columns of the underlying coordinates and 
two columns of orthogonalised errors. If more than two 
datasets have been considered then there will be more 
possible error plots.

An XY plot of the first two columns will indicate if 
the transformation is working well as the coordinates 
should be recognisable as linear transformations 

(such as rotations and scaling) of the coordinates in 
any one of the datasets. An XY plot of pairs of the 
columns of orthogonalised errors can locate outliers 
or large errors and confirm any findings from the 
Q-Q plot. These alternative analyses of the data are 
important since, in many cases, outliers so affect the 
SIEVER model that the actual location is hidden, apart 
from the general lack of fit or improbability of the 
model result.

A8.7.2 Listing and plotting the Error Matrix
Another way to search for errors in the location of 
features, and to identify the image from which they 
are likely to have come, involves listing and plotting of 
the Error Matrix. The Error Matrix (E) is obtained by 
‘rotating the errors back’ into the original system. That 
is, it is a reconstruction of the data matrix but with the 
model components left out:

It is the estimated error matrix in the model for the 
data matrix A into model and error as:

XY plots of the columns of E are sometimes very 
helpful, but are also often either hard to interpret or 
not much more informative than the Q-Q plot and 
plots of the columns of US.

A8.8 Using SIEVER to Locate Outliers
The SIEVER approach provides a set of tools that 
need to be applied skillfully. The main problem is that 
outliers, especially when they occur at features with a 
high Predictive Error weight, can affect the model to a 
degree where the outlier or outliers may well be fitted 
better than the majority of the features. Guarding 
against this possibiity is important and is best done 
by ensuring that the features SIEVER identifies as 
having a large predictive error (PE) weight are as 
accurate and well positioned as possible. A high 
PE weight indicates that a point has a lot of control 
over the model. This can be good and often some of 
the most important features are those with high PE 
weight. However, if a point with high PE weight is in 
error it can be very bad for the model.

The existence of a number of outliers to the point 
where there is not a clear distinction between the 
fitted errors and the outliers is usually indicated by 
a very poor fitting model and a lack of clear support 
for the rank of the A matrix as 2. These situations 
indicate the need to look carefully among the located 
features and images for the problem points.

What is more common is for the outliers to be clearly 
indicated as large errors after the model is fitted. 
These unusually large errors will show up in the Q-Q 
plot and in the XY plots of the columns of US and/or 
the columns of the estimated error matrix E.

Because of the possibility that eliminating points 
with large, but still statistically feasible, errors from 
the dataset will create a truncated distribution, it is 
important to improve the locations of features rather 
than deleting them. The Q-Q plot allows you to see 
if this has occurred. It is important not to over-SIEVE 
datasets before models are fitted. The objective is 
to find outliers and not remove points with large but 
statistically feasible error values.

The objective of the SIEVER approach is to identify 
and advise. The feature identifications in the spatial 
datasets should be revisited before action is taken 
with a specific point. If this is kept in mind SIEVER 
provides a very powerful means for screening 
collections of GCP and preparing the corresponding 
datasets for resampling.
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