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To derive spatial layers of relevant descriptors of Australian woody vegetation from remote sensing data
To use those descriptor layers to create landscape features characterising large area woody vegetation systems

Derivation of canopy complexity from LiDAR at the landscape scale
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A metric of canopy complexity, such as a count of significant
canopy layers, has been identified by land managers and forest
research scientists as a key data primitive for the attribution and
management of native forests at the landscape scale [1].

Presented below is preliminary research where the forest
canopy is attributed for complexity across structurally diverse

native forest (Figure 1)

Data collection

Airborne LIDAR (Figure 2) was captured in April 2012, LIDAR
point density was ~7 pts m® with up to 6 returns recorded per
pulse. 27 field inventory plots were concurrently installed where
structural and biophysical parameters were measured.

Counting canopy layers

To compute number of layers, P

gap

IS estimated where each

return is weighted by the “number of returns” (NoR) value [2,

3]. P

gap

IS then smoothed using a cubic spline to remove intra-

canopy gaps [4] and log transformed [2] to account for
occlusion. The exact derivative of P, is the canopy height

profile [2], the zero-crossings of P

gap

second derivative are used

to estimate position and number of layers as an metric of

canopy complexity (Figure 3).

To derive a robust estimate of canopy complexity, the initial
estimate of the canopy profile is used to create a Bayesian
model of height and NoR probability. This is then runin a
bootstrap (n = 99) and mean number of layers is reported.

Results and discussion

Figure 4 suggests that canopy height explains a large proportion
of variance in number of layers at the landscape scale. However
in very tall closed canopy forest examples there appears to be
canopy structure diversity not explained by canopy height alone.
Also in low open woodland complexity seems independent of

canopy height.

Conclusion

LIDAR can characterise complexity across a range of native
forest types. This is of particular importance to land managers

for forest typing, determining succession and habitat suitability.
These results can also be used as inputs into
canopy/atmosphere modelling.
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Canopy Complexity

Figure 1. Location of the three study sites within a canopy

complexity continuum
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The project team will deliver a set of tools ready to be applied by Australian state agencies to create landscape features describing woody vegetation.
The tools will be developed using open source language and adapted to be applied at a large area scale.

Figure 2. Point cloud (coloured by return height) captured over very tall
closed canopy forest.
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Figure 3. Generation of a Canopy Height Profile (CHP) and number and location of canopy layers using airborne LIiDAR captured over a
forest plot. (A) Diagram of structurally complex very tall closed canopy forest plot; (B) LiDAR derived CHP is used to characterise the
distribution of vegetation along the vertical axis; (C) the number and location of canopy layers is estimated from the first derivative of CHP

Figure 4. Relationship between LiDAR derived canopy height and mean
number of layers. Mean number of canopy layers is generated using a
bootstrap where simulated point clouds are derived from a Bayesian

model of height and NoR.
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