
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. YY, NOVEMBER ZZZZ 1

Performance Comparisons of Contour-based

Corner Detectors

Mohammad Awrangjeb*†, Guojun Lu‡ and Clive S. Fraser†

Abstract

Corner detectors have many applications in computer vision and image identification and retrieval.

Contour-based corner detectors directly or indirectly estimate a significance measure (e.g., curvature)

on the points of a planar curve and select the curvature extrema points as corners. While an extensive

number of contour-based corner detectors have been proposed over the last four decades, there is no

comparative study of recently proposed detectors. This paper is an attempt to fill this gap. The general

framework of contour-based corner detection is presented and two major issues – curve smoothing and

curvature estimation, which have major impacts on the corner detection performance, are discussed.

A number of promising detectors are compared using both automatic and manual evaluation systems

on two large data sets. It is observed that while the detectors using indirect curvature estimation

techniques are more robust, the detectors using direct curvature estimation techniques are faster.

Index Terms

corner detection, performance study, CPDA, Fast-CPDA.

EDICS: ARS-RBS Region, Boundary, and Shape Analysis, ARS-IVA Image & Video Mid Level

Analysis.

I. INTRODUCTION

The terms ‘dominant point’, ‘critical point’ and ‘corner’ are taken as equivalent in the literature

to indicate detected corners on a planar curve (open or close contour) [48]. Although the notion
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of a ‘corner’ seems to be intuitively clear, no generally accepted mathematical definition exists for

digital curves [16]. In fact, different approaches give different but conceptually related computational

definitions of a visual phenomenon. For example, Guru et al. [17] defined a corner as the intersection

of two adjacent relatively straight curve-segments. Thus, a corner point is found at a location where

the direction of the curve changes significantly and abruptly.

Although the terms ‘interest-point’ and ‘corner’ are sometimes used equivalently in the literature,

corners are a special subclass of interest-points. Interest-points include not only corners, but also

T-junctions and blobs, as well as locations of significant texture variation [23]. While contour-based

corner detectors first perform edge detection, and then analyse the edges to find the locations of rapid

changes in direction (ie, corners), interest-point detectors no longer require an explicit edge detection

step and they search for high levels of curvature directly in the image gradient. Consequently, interest-

point detectors may detect image points that are not corners in the traditional sense, a small bright

spot on a dark background, for instance. A comprehensive review and performance comparison of

interest-point detectors can be found in [24], [41].

Recently, a number of promising contour-based detectors have been proposed. However, a com-

parative study to assess each of them on a common platform has yet to be reported. This paper

is an attempt to fill this gap. Note that the earlier comparative work by Mokhtarian and Mohanna

[26] is almost six years old. Moreover, they used a small data set and their evaluation system was

manual and consisted of flawed evaluation metrics [5]. In this paper, there are two major contributions

as follows. Firstly, a comprehensive analysis of contour-based detectors under a general framework

of contour-based corner detection is presented. Secondly, a thorough comparative study of eleven

promising detectors, performed using both automatic [6] and manual [26] evaluation systems on two

large data sets, is reported. A ranking of detectors is then made on the basis of results obtained.

The rest of the paper is organized as follows. Sections II and III present the general framework of

contour-based corner detection and discuss two major issues, namely curve smoothing and curvature

estimation. Both have major impacts on corner detection performance. Section IV initially summarizes

previously reported results, and then offers comparison of the eleven promising detectors. Finally,

concluding remarks are made in Section V.

II. GENERAL FRAMEWORK OF CONTOUR-BASED CORNER DETECTION

As shown in Fig. 1, common contour-based corner detection techniques comprise of five steps:

edge extraction and selection, curve smoothing, curvature estimation, finding corners and coarse-to-

fine corner tracking. The ‘corner tracking’ step indicated in Fig. 1 is optional and often not used by

many detectors. The ‘curve smoothing’ and ‘curvature estimation’ steps are sometimes integrated,

as indicated in the figure, for example, for detectors estimating indirect curvature via an indirect
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Fig. 1. Five steps for contour-based corner detection.

smoothing technique.

• Edge extraction and selection: Given a grey-scale image, a corner detector first extracts edges

using an edge detector. Most of the corner detectors in the literature do not detail this step since

edge extraction is a separate algorithm and commonly used by all corner detectors. However,

Awrangjeb and Lu [5] have shown that extraction of strong edges and elimination of short and

weak edges, which may be large in number, can increase the performance of a corner detector.

• Curve smoothing: Evaluating the slope and curvature of a discrete curve is not simple, since

the position (coordinates) of a curve-point is quantized. Moreover, there may be noise and local

variation on the curve. Therefore, a degree of smoothing should be carried out before or during

the curvature calculation in order to make the curvature extrema points more distinguishable

from other curve-points.

There are two kinds of smoothing: direct and indirect. A direct smoothing, e.g. the Gaussian

smoothing [27], [32], removes noise and changes the curve-point locations, while an indirect

smoothing, e.g. the region of support (RoS) [36] or the chord-length [33], does not change the

curve-point locations. As the size of the RoS or chord is increased, the curvature estimation

technique can overlook fine detail of the curve without changing the curve-point locations to

any practical extent. Both kinds of smoothing have a similar effect in the sense that using a

low value for the smoothing parameter may not significantly reduce the effect of noise and

may detect many spurious corners, while using a large value for the smoothing parameter may

overlook important detail in the curve.

Since detectors using indirect smoothing do not physically remove noise from the curve, they

may detect spurious corners and may not yield satisfactory corner localization. Successful corner

detection requires some direct curve smoothing to be performed beforehand [2]. Rosenfeld and

Johnston [36] and Rosenfeld and Weszka [37] reported the importance of direct curve smoothing

(Gaussian smoothing with scale σ) in their earlier work, though they did not apply smoothing.

Awrangjeb and Lu [6] applied a small Gaussian smoothing-scale (direct smoothing) before the

May 14, 2012 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. YY, NOVEMBER ZZZZ 4

estimation of curvature using chords (indirect smoothing). In addition to using a fixed Gaussian

smoothing, He and Yung [18] used a dynamic (adaptive) RoS to calculate the variable curvature-

threshold.

• Curvature estimation: A corner detector estimates a given significance measure, i.e. curvature,

for each point of the smoothed curve. The estimated curvature is sometimes referred as ‘corner

strength’ or ‘cornerity’ [4].

There are two types of curvature estimation techniques in the literature: direct and indirect. In

direct curvature estimation, an algebraic or geometric estimation such as cosine, local curvature or

tangential deflection [27], [37], [32], [30] at each curve-point is used as the significance measure.

Such algebraic or geometric estimations are measured at each point with its neighbouring points.

For example, Mokhtarian and Suomela [27] estimated the Euclidean curvature (local curvature)

at each point considering two neighbouring points on each side.

In contrast, in indirect curvature estimation, indirect measures are used as significance mea-

sures. For example, Masood and Sarfraz [21] counted the number of curve-points lying inside

three rectangles moving along the curve. Ramer [33] used the perpendicular distances from

the chord connecting the two end-points of the curve (segment) to curve-points. Alternative

indirect measures of the significance are area [49] and distance [46] functions, eigenvalues [40]

and eigenvectors [44] of the covariance matrix, and the determinant of the gradient correlation

matrix [47]. Since direct curvature estimation techniques consider less neighbouring points on

each side of a point, they are more sensitive to noise and local variation of the curve than their

indirect counterparts [6] (see detail in Section III-B).

• Finding corners: A corner detector gathers the curvature maxima points on curves in the candidate

corner set. Corner detectors can be categorized into three groups based on how they select the

final corners from the candidate set. In the first group, there are algorithms [27] which apply

thresholds to the candidate corners in order to select strong corners and remove weak (also known

as ‘round’ [27]) and false corners [18]. Candidate corners that survive after the application of

the thresholds are then deemed to be the final corners. Mokhtarian and Suomela [27] applied

a single threshold to decide the final corner set. He and Yung [18] and Awrangjeb and Lu

[6] used a curvature-threshold to remove weak corners and an angle-threshold to remove false

corners. Algorithms, for example, Pedrosa and Barcelos [30], in the second group directly decide

curvature extrema points as corners without considering any curvature thresholds.

The third group comprises algorithms [32] that obtain a piecewise linear polygonal approximation

of the shape (closed contour of an object) subject to some constraints on the goodness of fit. The

actual or extrapolated intersections of the adjacent line segments in the approximated polygon are

then detected as dominant points [33]. Masood [22] applied a recursive optimization algorithm
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to delete one point at a time (with minimum approximation error) from the candidate set until

the remaining points achieved their optimal positions. The optimal position for a candidate point

was searched within its two neighbouring candidate points where the approximation error was

minimized. Carmona-Poyato [11] suppressed the collinear candidate points if the distance from a

candidate point to the straight line joining two of its neighbouring candidate points was below a

predefined threshold. Parvez and Mahmoud [29] improved this detector by applying an adaptive

optimization algorithm for collinear candidate point suppression. Pinheiro and Ghanbari [32] first

selected the candidate corners on a high smoothing-scale (σ = 1024) and then added new corners

in the lower scales until a desired level of approximation of the input shape was achieved.

• Corner tracking: If corners are detected using high Gaussian smoothing-scales (σ), their localiza-

tion is generally not good. A coarse-to-fine corner tracking is carried out for the detected corners

to improve their localization. For example, Mokhtarian and Suomela [27] detected corners at

σ = 4 and tracked them through σ = 3 and 2 to σ = 1. At each scale (say, σ = 2) the point

of maximum curvature around a corner (which was detected at the immediate higher scale, i.e.

σ = 3) is selected as the next tracked position for that corner. The tracked position at σ = 1 is

the final location for that corner. A similar approach has been adopted by Pinheiro and Ghanbari

[32].

Note that the corner tracking step uses no threshold and changes the corner positions only, not

the number of corners. This corner tracking step is optional in many detectors [18], [6] that use

low σ values for smoothing.

III. MAJOR ISSUES OF CORNER DETECTION

Curve smoothing and curvature estimation are the most critical steps in corner detection. In order

to detect all true corners at their correct locations, and avoid detection of any false or weak corners

on a curve, it is very important that the curve be first smoothed with an appropriate smoothing-scale.

However, selection of an appropriate smoothing-scale for a given curve is not an easy task.

On the other hand, curve-point locations are quantized and there may be noise and local variations

on the curve. In addition, geometric transformations or signal processing may affect the edge detection

performance. As a result, it is very hard to consistently estimate curvature at a curve-point under

different conditions.

In this section, additional aspects of the selection of smoothing-scale and curvature estimation

techniques are discussed.
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A. Smoothing-scale Selection

A smoothing parameter, which indicates the amount of direct or indirect smoothness for curvature

estimation, is employed to control the overall corner detection performance. There are three smoothing

parameters referred to in the literature: Gaussian smoothing-scale σ [26], chord-length L [6] and RoS

k points on both sides of a curve-point [37], [30]. These will be referred to as smoothing-scales

in this paper. While the first one causes a direct smoothing of the curve, the latter two are applied

for indirect smoothing. A corner detector may use one [27] or more [6] of these three smoothing

parameters.

In direct smoothing using σ [27], each curve-point P is convolved using a Gaussian function whose

window size is determined by σ. While a large σ ensures a high degree of smoothness by involving a

high number of neighbouring points on both sides of P in the convolution operation, a small σ offers

a low degree of smoothness. In indirect smoothing using L [6], the parameter value indicates how

many neighbouring points on both sides of P are considered during curvature estimation. In indirect

smoothing using k [37], the parameter value indicates how many neighbouring points on both sides

of P are considered during the search for local curvature maxima. Sometimes k is also used for the

same purpose as L. For example, Zhang et al. [47] estimates curvature using a 1× 1 neighbourhood

around each curve-point.

Direct smoothing is mainly performed before curvature calculation [27], [46], [6], [26], [32]

and indirect smoothing is typically used during curvature estimation [6]. In addition to a direct

smoothing before curvature estimation, many detectors [25], [18], [37] also employ direct [25] or

indirect smoothing [18], [37] after curvature calculation. Mokhtarian and Mohanna [25] applied direct

smoothing on the estimated curvature function and He and Yung [18] and Rosenfeld and Weszka [37]

applied an indirect smoothing (RoS k) to determine local curvature maxima points.

Detectors using a single smoothing-scale [1] suffer from the problem of selecting an appropriate

value for σ, L or k for a given curve. The reason is that there may be different types and sizes of

corners on a single curve. Moreover, the human visual system (HVS) shows two notable characteristics

[16]. Firstly, the human visual perception treats images on several scales simultaneously. Secondly,

when the signal-to-noise ratio decreases in an image, the HVS automatically increases the scales at

which it characterizes the image. In addition, the detected corners using a single smoothing-scale may

also be ill-positioned [49]. Therefore, it is preferable to detect corners using a multi-scale analysis.

Multi-scale corner detectors using a full range of smoothing-scales [34], [32] are computationally

too expensive. In addition, the combination of corners detected in different scales presents a further

problem. In order to avoid such problems, recently developed contour-based detectors detect corners

on each curve using either a fixed or one of three medium smoothing-scales depending on the curve-
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length. The detected corners are then tracked to improve their localization [27], [25].

As another alternative solution to the problems of using a full range of scales, Rosin [38] represented

curves at their natural (significant) scales. This representation describes each part of a curve at its

significant scale (for which certain criteria are met). As a result, each curve is represented using many

significant scales, instead of using the full range of scales. Gao et al. [15] proposed a multi-scale

corner detector based on local natural scale. However, local approaches are computationally more

expensive and coarse scale features cannot be effectively detected using the local curve nature [38].

Beau and Singer [9] suggested only coarse feature detection in the reduced resolution curve to reduce

the computational complexity, because large scale features are more stable in image transformations

and can be better used in different applications.

There are also adaptive smoothing (also known as non-linear filtering or anisotropic diffusion of

the signal) techniques [35], [30] for corner detection. The idea behind adaptive smoothing is to

apply a versatile operator that can adapt to the local topography of the signal. Though the adaptive

technique improves the localization of the detected corners without following a tracking step, such an

iterative adaptation of the smoothing-scale is computationally demanding. Pedrosa and Barcelos [30]

applied the anisotropic diffusion directly to the curvature function. Therefore, the diffusion parameter

ρ directly change the curvature function (i.e., direct smoothing). Like other smoothing parameters

discussed above, while a large value of ρ indicates a high degree of smoothing, a small value of ρ

indicates a low degree of smoothing.

Due to the fact that detectors using either a full rage of multi-scales [34], significant-scales [15] or

adaptive-scales [35], [30] are computationally demanding, the recent trend has been to detect corners

using either a single-scale [18], [47] or a small range of multi-scales (e.g., two [46], [7] or three [6],

[45] smoothing-scales).

B. Curvature Estimation

Curve-point locations are quantized and may be affected by noise introduced during an image

processing operation and by the edge extractor. In addition, a curve may contain different sized

corners which may require different amounts of smoothing. However, choosing or calculating an

appropriate value for σ, L, k or ρ is very difficult for a given curve. As a result, there exists no strict

mathematical definition of curvature for a discrete curve and curvature is only approximated [49].

As discussed in Section II, there are two main types of curvature estimation techniques – direct

and indirect [49]. In this section, their technical details are presented with examples in order to show

why the indirect curvature estimation techniques are more stable than the direct curvature estimation

techniques.
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Fig. 2. Intrinsic definition of curvature.

1) Direct curvature estimation: The early dominant point detectors estimated angle as a significant

measure (curvature measures such as cosine angle or tangential deflection) at each point P of the

curve by considering a fixed RoS k. However, many modern dominant point detectors calculate a

variable k on both sides of P with the expense of an additional computational cost. Depending upon

the above RoS determination criterion, dominant point detection algorithms were divided into two

groups. Firstly, algorithms with non-adaptive RoS keep k fixed for all curves and points [36], [37],

[30]. Secondly, algorithms with adaptive RoS calculate RoS for each point using the local nature of

the curve [39], [20].

Many recent corner detectors [34], [27], [32] use the Euclidean curvature. The Euclidean curvature

C at a point P is defined as the instantaneous rate of change of ψ, that is the angle subtended by the

tangent at P with the x-axis, with respect to the arc-length u [34] (see Fig. 2):

C(u) =
dψ

du
. (1)

This curvature estimation technique considers a very small neighbourhood (2× 2) on both sides of P

to evaluate the curvature at P [6]. Consequently, the estimated curvature using the above definition is

very sensitive to the local variation and noise along the curve. In a region with a high local variation,

ψ changes significantly from point to point within a short curve segment. As depicted in Fig. 3, in a

small but highly variable curve-region, the derivatives of the curve point-locations may lead to a high

curvature estimation. As a result, if such local variation and noise are not initially smoothed away

using a high smoothing-scale, detectors utilizing the direct curvature estimation may detect many

weak and false corners. However, smoothing has its own problems as discussed in Section III-A.

The Euclidean curvature in (1) can also be expressed as the reciprocal of the radius of an osculating
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Fig. 3. Derivative-based (direct) curvature estimation within a local variation of a curve.

circle along the curve. There is a unique circle that passes through each point P of the curve and

most closely approximates the curve near P . Nguyen and Debled-Rennesson [28] considered the

circle passing through P , Pl and Pr, where Pl and Pr are the left and right end points of the RoS

k for P . Therefore, this curvature estimation technique considers a large neighbourhood and is less

sensitive to noise, but depends on how insensitive k is to noise.

Detectors using cosine angle or tangential deflection [36] were found to be more sensitive to noise

and less robust than those using the Euclidean curvature [6].

Detectors using direct curvature estimation techniques may use no smoothing [37], direct smoothing

only [27], [46], [13] or both direct and indirect smoothing [18], [30].

2) Indirect curvature estimation: Since direct curvature estimation techniques are sensitive to noise

and local variation of the curve, there are a number of detectors which use different curvature

estimation techniques. For example, the detector in [13] used the distance from a curve-point P

to a chord of length L as a significance measure on that point. Teh and Chin [39] used the ratio of

the distance between P and the chord connecting the two end points Pl and Pr of a dynamic RoS to

the length of the chord. However, such measurements were noted as sensitive to noise [10]. Wu [43]

and Carmona-Poyato et al. [10] used the average of the bending values within the adaptive RoS. Wu

[43] determined the bending value as the maximum of the distances in x and y directions from P to

Pl and Pr, whereas Carmona-Poyato et al. [10] estimated the average of two vectors
−−→
PPl and

−−→
PPr.

The CPDA detector [6] followed a distance accumulation technique using three chords as shown

in Fig. 4. Since it uses a large neighbourhood, it is less sensitive to noise and local variations on

the curve [6]. Particularly, chord 1 (short) accumulates (sums) both positive and negative distances

and chord 2 (long) accumulates distances which are almost the same for all points inside and outside

this region. So the curvature product from the accumulated distances using three chords of different

lengths is almost the same for all the points in and out of the local variation region. As a result, the

CPDA detector detects corners with a higher average repeatability.

May 14, 2012 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. YY, NOVEMBER ZZZZ 10

Fig. 4. CPDA (indirect) curvature estimation within a local variation of a curve.

Many detectors involving polygonal approximation [22], [11], [29] use the Freeman chain code

[14] to select the candidate corner set. Marji and Siy [20] used the number of times that a curve

point was selected as an end point while computing the dynamic RoSs for other curve-points.

Detectors using indirect curvature estimation techniques may use direct smoothing only [46],

indirect smoothing only [13] or both [6]. They usually integrate indirect smoothing technique with

curvature estimation [13], [6]. Zhang et al. [46] estimated indirect curvature without integrating or

using an indirect smoothing technique.

IV. PERFORMANCE STUDY

Many contour-based detectors [27], [34] do not use any evaluation metrics. Instead they show the

detected corners on a small number of artificial and real images. In this section, experimental results

from selected recent papers [26], [45], [18], [5], [6], [46], [7], [47] are first summarized. An empirical

study on a number of popular corner detectors is then presented using both the automatic [5] and

manual [26] performance evaluation systems on two large data sets.

Note that the aim of the reported performance study has been to estimate the accuracy and robust-

ness of promising contour-based detectors when they are applied to real-world images. Therefore,

evaluation systems and indices [22], [11], [12] used for evaluating polygonal approximation algorithms

are not included in this study.

A. Summary of Existing Evaluations

Table I compares the evaluation systems and reported test results for selected contour-based de-

tectors. It is observed that many of the existing evaluation systems are manual (M), meaning they

involved human judgement. Awrangjeb and Lu [5], [6] first introduced the automatic evaluation

system (A) and included geometric sheared and lossy JPEG compressed images into the test data

set. Many authors [26], [45], [18] have used a small set of images and He & Yung [18] did not
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use any geometrically transformed or signal processed images. This makes their evaluation outcomes

less reliable. As compared to five most promising detectors, Awrangjeb and Lu [6] showed that

their CPDA detector offered the optimal effectiveness in terms of both average repeatability and

localization error.

Though the GCM detector [47] outperformed the CPDA detector [6] in the study by Zhang et al.

[47], the opposite was found in both of the manual and automatic performance studies presented in

the following subsections. The reasons were possibly, unlike Zhang et al. [47], the CPDA detector

[6] used standard parameters recommended by the respective authors for each detector and involved

JPEG compressed and sheared images in the test data set.

Since, the evaluation results provided in Table I were carried out on different platforms (different

evaluation systems using different data sets and metrics), an automatic evaluation of eleven popular

corner detectors has been carried out using – average repeatability and localization error for effec-

tiveness evaluation [6] and running time for efficiency evaluation. In addition, in order to show the

accuracy of the detected corners with respect to results achieved via human perception, the manual

evaluation system in [26] has been adopted and the detectors have been evaluated in terms of accuracy

and localization error.

B. Current Evaluation

1) Performance indices: In the automatic system [6], corners detected in the original images by

a detector are considered as reference corners, and corners detected by the same detector in the test

images, which were signal processed and geometrically transformed, are taken as test corners. Then,

reference and test corners are compared to evaluate the performance of that detector.

Two evaluation metrics from Awrangjeb and Lu [6] were used for robustness tests of detected

corners. Repeatability R indicates how stable the detected corners are under different geometric

transformations and signal processing operations. Average repeatability is defined as:

Ravg =
Nr

2

(
1

N0

+
1

Nt

)
. (2)

where N0 and Nt are the number of corners in the original and test images, respectively and Nr is

the number of repeated corners between them. Localization error shows how accurately a detected

corner is localized by the detector, and it is measured using the root-mean-square-error (RMSE) of

the detected corners:

Le =

√√√√ 1

Nr

Nr∑
i=1

[(xti − xoi)2 + (yti − yoi)2]. (3)

Here (xoi, yoi) and (xti, yti) are the original and test positions of the i-th repeated corner. An RMSE

value of a maximum 3 pixels was allowed to find a corner correspondence or repetition.
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Fig. 5. Corner detection examples: (a) edge image (of original ‘Lena’ image) obtained using the edge extraction and

selection setup in [5] and ground truth corners, (b) AD [30], (c) RJ [36], (d) CSS [27], (e) He & Yung [18], (f) MSCP

[45], (g) ARCSS [5], (h) Eigenvalue [40], (i) CPDA [6], (j) Zhang [46], (k) Fast-CPDA [7] and (l) GCM [47].

In the manual system [26], corners detected in the original images by a detector are considered as

detected corners and corners identified by human subjects on the same original images are considered

as ground truth. Then, ground truth and detected corners are compared to evaluate the performance

of that detector. The accuracy index is the same as (2) except Nt = Ng, where Ng is the number

ground truth corners, Nr is the number of corresponding corners between detected and ground truth

corners. The localization error is measured using (3) where (xti, yti) is replaced with the ground

truth position (xgi, ygi).

2) Data sets: The first data set had a total of 25 different original 512× 512 grey-scale images

including some artificial images like ‘Block’ and real world images like ‘Lena’, ‘Leaf’, ‘House’ and
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‘Lab’. All of the above original images were collected from standard data sets [31], [42], [3]. The

data set employed had a total of 9450 affine transformed and signal processed (test) images, which

were obtained by applying the following seven approaches of operations on each original image:

♦ rotation at 18 different angles θ in [−90◦,+90◦] at 10◦ apart, excluding 0◦;

♦ uniform (U) scaling factors sx = sy in [0.5, 2.0] at 0.1 apart, excluding 1.0;

♦ non-uniform (NU) scaling factors sx in [0.7, 1.3] and sy in [0.5, 1.8], at 0.1 apart, excluding the

cases when sx = sy;

♦ combined transformations (rot.-scale): θ in [−30◦,+30◦] at 10◦ apart, excluding 0◦, followed by

uniform or non-uniform scaling factors sx and sy in [0.8, 1.2] at 0.1 apart;

♦ JPEG lossy compression at 20 quality factors in [5, 100], at 5 apart;

♦ zero mean white Gaussian noise at 10 variances in [0.005, 0.05] at 0.005 apart; and

♦ shearing factors shx and shy in [0, 0.012] at 0.002 apart, excluding the one when shx = shy = 0.0.

Therefore, the first data set had a total of 450 rotated, 375 uniform-scaled, 2925 non-uniform

scaled, 3750 rotated and scaled transformed images. It also had 500 JPEG compressed, 250 Gaussian

noise-induced and 1200 sheared images. Note that transformations comprising rotations were also

followed by cropping that removed the outer black parts. Consequently, many detected corners in the

original images were cropped off in the test images for the transformations involving rotations.

The second data set is regarded as a standard by the computer vision community [24].1 It consists of

eight sets of images, where each set has an original image and five projectively transformed images.

The operations include viewpoint change (2 sets), scaling (zoom and rotation, 2 sets), blurring (2

sets), illumination (light) change (1 set) and JPEG compression (1 set).

3) Detectors: Eleven recently developed detectors, as shown in Table II, that have been found to

yield consistent results, have been evaluated. Six of them are direct curvature estimating detectors and

the other five are indirect curvature estimating detectors. All detectors were assigned default parameter

settings indicated by their authors, except the RJ [36], AD [30] and Eigenvalue [40] detectors for

which direct smoothing was used to enhance their performance.

In addition, the Harris-Laplace [24], SURF (Speeded Up Robust Features) [8] and LoG (Laplacian

of the Gaussian) [19] interest-point detectors have been used to compare the performance of contour-

based detectors with interest-point detectors. While the Harris-Laplace detector detects corners, the

other two interest-point detectors detect blobs (a description of the local neighbourhood around a

detected point) [41]. The Harris-Laplace was the best performing interest-point detector in similarity

transformations and the LoG detector also performed close to the Harris-Laplace detector [24]. Unlike

the study in [24], it was observed that the LoG detector performed slightly better than the Harris-

1Available at: http://www.featurespace.org/
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Laplace detector in the study presented below. The reasons were possibly due to use of different

metrics for repeatability estimation and unavailability of some images in the test sequences of the

second data set which were used in [24].

C. Results and Discussions

Fig. 5 shows ground truth and corner detection examples on the ‘Lena’ image. The evaluation

results presented below are averaged over the whole data set. It is seen that while the detectors using

indirect curvature estimation techniques [6], [46] are more robust, the detectors using direct curvature

estimation techniques [45], [27] are more efficient.

1) Accuracy: Table III shows the accuracy and localization error on the first data set using the

manual evaluation system [26]. While the CPDA detector offered the highest accuracy, the Zhang

detector [46] had the lowest localization error. Among the detectors using indirect curvature, the

CPDA, Fast-CPDA and Zhang detectors performed better than those using direct curvature. The

GCM and Eigenvalue detectors performed worse than the CSS and MSCP detectors as they detected

a lot of false corners, as shown in Figs. 5(h) and 5(l). Among the detectors using direct curvature,

the MSCP detector performed the best and the RJ detector performed the worst, as it detected a large

number of false corners as shown in Fig. 5(c).

2) Robustness: Figs. 6 and 7 present the results under geometric transformations and signal

processing operations, respectively, using the first data set. Fig. 8 shows the same using the second

data set.

In both data sets, the indirect curvature estimating detectors were more robust than their direct

curvature estimating counterparts both in terms of average repeatability and localization error. More

specifically, CPDA, Fast-CPDA, Zhang and Eigenvalue detectors mostly occupied the first four

positions in the ranking. In the first data set, among these four detectors, the CPDA and Fast-CPDA

detectors performed better than the Zhang and Eigenvalue detectors in rotation, scaling and noising

operations. The former two showed slightly lower repeatability, but lower (better) localization error

in rotation-scaling, shearing and JPEG operations (Figs. 6 and 7). In addition, in the second data set,

the GCM detector performed better in viewpoint change and JPEG compression, the CPDA detector

in blurring operations, and the Fast-CPDA detector in scaling and light change than the Zhang and

Eigenvalue detectors. The largest localization error was produced by the AD detector (Fig. 8).

In the first data set, among the detectors using indirect curvature estimation techniques, the GCM

detector performed the worst in geometric transformations (see Fig. 6). However, it offered the

highest repeatability in signal processing operations but suffered from higher localization error than

the CPDA and Fast-CPDA detectors (see Fig. 7). In the second data set, this detector also gave

the highest repeatability in viewpoint change and JPEG compression operations, but suffered from
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Fig. 6. Comparative results in geometric transformations (Data set 1).

higher localization error than the CPDA and Fast-CPDA detectors. There are four main reasons for

its behaviour. Firstly, its significance measure (determinant of gradient correlation matrix) is highly

sensitive to geometric transformations. Secondly, it uses first-order derivatives, which often yield a

high significance measure within a local variation area of a curve, as shown in Fig. 3. Thirdly, it uses

a very small neighbourhood (1× 1) around each pixel during estimation of significance measure.

Finally, it does not adopt any technique to remove false corners. Consequently, the GCM detector

detects many false corners (see Fig. 5(l)). These false corners are repeatedly detected in the test

images also. Therefore, although it showed high repeatability in signal processing operations and

thereby ranked second under robustness (Tables IV and V), it ranked eighth under accuracy (Table

III).

May 14, 2012 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. YY, NOVEMBER ZZZZ 16

Fig. 7. Comparative results in signal processing operations (Data set 1).

In the first data set, among the detectors estimating direct curvatures, the RJ detector showed the

lowest repeatability and the AD detector suffered the highest localization error in both geometric and

signal processing attacks. The MSCP and He & Yung detectors were more robust than the CSS and

ARCSS detectors. The RJ detector yielded many false corners (see Fig. 5(c)), which were not stable

under different operations. A similar trend was observed for the direct curvature estimating detectors

in the second data set, except the AD detector performed the worst among all the detectors. The reason

was, like the RJ detector, it estimated the k-cosine curvature and therefore detected a lot of false

candidates. While trying to remove the false candidates using the anisotropic diffusion, it removed

some true corners as well but failed to remove all false candidates (see Fig. 5(b)). A coarse-to-fine

corner tracking step was also necessary to improve the localization of the detected corners.
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Fig. 8. Comparative results in different operations (Data set 2).

In the second data set, the Harris-Laplace interest-point detector offered lower average repeatability

than the contour-based corner detectors in viewpoint change, light change and blurring. The SURF

detector performed worse (lower repeatability and higher localization error) than the contour-based

detectors in all geometric transformations, light change and blurring. However, all three interest-

point detectors offered significantly higher repeatability than the contour-based detectors in JPEG

compression operation. Moreover, the LoG detector performed better than the contour-based corner

detectors in scale change and blurring.

Fig. 9 shows the average repeatability of top six detectors (4 contour-based and 2 interest-point

detectors) in different viewpoint and scale (scaled and rotated, as shown in Fig. 10) changes. The

CPDA, Fast-CPDA and Eigenvalue detectors showed similar results in viewpoint change. The CPDA,
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Fig. 9. Average repeatability of top six detectors in different viewpoint and scale changes.

Fast-CPDA and LoG detectors performed better in scale change than the Eigenvalue and GCM

detectors. The GCM detector offered higher repeatability in viewpoint change than other detectors.

However, as discussed above it detected a lot of false corners which were repeated in the test images

as well. In addition, it suffered from higher localization error.

The above results are summarized in Tables IV and V. In the first data set, the CPDA detector

had the highest robustness among all the detectors in terms of both average repeatability rate and

localization error. The GCM and Zhang and Fast-CPDA detectors performed close to the CPDA

detector. In the second data set, the Fast-CPDA detector offered the highest repeatability but the LoG

detector suffered the lowest localization error. The CPDA detector performed close to the Fast-CPDA
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Fig. 10. Two sets of images from the second data set: graffiti (viewpoint change, top row) and boat (zoom and rotation,

bottom row).

and LoG detectors. The Eigenvalue detector had the highest localization error among the detectors

using indirect curvatures. Among the detectors using direct curvatures, the MSCP and He & Yung

detectors performed better than the CSS and ARCSS detectors.

Moreover, it was observed that the contour-based detectors are less robust to projective transfor-

mations (the second data set, Table V) than to affine transformations (the first data set, Table IV).

The reason is that while in affine transformations straight lines remain straight, parallel lines remain

parallel, and rectangles might become parallelograms; in projective transformations straight lines

remain straight but parallel lines converge toward vanishing points which can fall inside or outside

the image, even at infinity. Moreover, the transformations performed on the second data set produced

more significant geometric perturbations than those in the first data set. Fig. 10 shows two sets of

images from the second data set.

Note that in the reported performance comparisons, average repeatability and localization error were

estimated from many thousand corner detections. Many of these detected corners were quite stable,

i.e., they could be detected by most detectors. However, there were difficult cases where some corners

were missed or weak or false corners were detected. The CPDA, Fast-CPDA, and Zhang detectors

performed better than others in such difficult situations. Therefore, though the average repeatability

and localization error of these detectors seem to be very close to each other, their performance

difference is quite significant.

3) Efficiency: Table VI compares the running time of different detectors on a Windows XP machine

with 3.00GHz of Intel(R) Core(TM)2 Duo CPU and 3.23GB of RAM (using the first data set).

The Fast-CPDA is the fastest detector followed by the MSCP and CSS detectors. The Fast-CPDA

detector estimates curvature only on selected limited number of curve-points. The MSCP detector

simply applies a curvature-threshold to the curvature product function and all three detectors do not

follow any corner tracking step. The CSS detector estimates curvature on a single medium scale
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(σ = 4) and tracks the detected corners to σ = 1. On the other hand, the CPDA detector consumes

a lot of time in curvature estimation using three chords. He & Yung, though a single-scale detector,

was slow because it spends much time in adaptive curvature-threshold calculation using dynamic

RoS. Eigenvalue detector is a slower detector, since it estimates the eigenvalues of covariance metrics

using a 10× 10 neighbourhood around each pixel. The AD detector is the slowest detector since it

iteratively smoothes the curvature function using the anisotropic diffusion technique.

From Table VI it is also evident that, except for the Fast-CPDA and AD detectors, the detectors

estimating direct curvatures are faster than those estimating indirect curvatures. Since the running

time of detectors can be insignificant with even more powerful computers, it can be said that CPDA,

Fast-CPDA and Zhang detectors perform the best.

V. CONCLUSION

In this paper, the general framework of contour-based detectors has been presented. There are five

main detection steps: edge extraction and selection, curve smoothing, curvature estimation, finding

corners and coarse-to-fine corner tracking. The ‘corner tracking’ step is an optional step. The ‘curve

smoothing’ and ‘curvature estimation’ steps are sometimes integrated, for example, for detectors

estimating indirect curvature with an indirect smoothing technique.

Out of five steps, curve smoothing and curvature estimation are the most crucial steps as they

significantly control the detection performance. There are two types of smoothing: direct and indirect.

The curvature estimation techniques are also categorized into two groups: direct and indirect. A corner

detector can use direct smoothing, indirect smoothing or both, but it estimates curvature using only

direct or indirect techniques. As the detectors estimating indirect curvatures use a large neighbourhood,

their curvature estimations are more stable than their direct counterparts.

A comparative study of selected contour-based detectors has been carried out using both automatic

(robustness) and manual evaluation (accuracy) systems. Experientially, it has been observed that while

the detectors using indirect curvature estimation techniques are more accurate and robust, the detectors

using direct curvature estimation techniques are more efficient. The Harris-Laplace and LoG detectors,

which are well regarded interest-point detectors, though offer lower localization error, are less robust

than the contour-based detectors.
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TABLE I

COMPARISONS OF EVALUATION SYSTEMS AND TEST RESULTS FOR SELECTED CONTOUR-BASED DETECTORS (TYPE: M

= MANUAL EVALUATION SYSTEM INVOLVING HUMAN JUDGEMENT [26], A = AUTOMATIC EVALUATION SYSTEM [6];

ERROR: MAXIMUM DISTANCE IN PIXELS BETWEEN REFERENCE AND DETECTED CORNERS FOR A REPEATED CORNER,

NA = NOT APPLICABLE; DATA SET: NUMBER OF ORIGINAL AND TEST IMAGES; OPERATIONS: HOW TEST IMAGES WERE

GENERATED, US = UNIFORM SCALING, NUS = NON-UNIFORM SCALING; TEST RESULTS: CCN = CONSISTENCY OF

CORNER NUMBERS [26], Acu = ACCURACY [26], TDR = TRUE DETECTION RATE [45], FDR = FALSE DETECTION

RATE [45], Le = LOCALIZATION ERROR [6], EI = ERROR INDEX [46], Ravg = AVERAGE REPEATABILITY [6], Time IN

SECONDS).

References Type Error
Data set Operations

Detectors Test results
Ori. Test Geometric Signal

Mokhtarian 2006 M 3 5 590

Rotation(90) CCN Acu

US(50) CSS 51 72

NUS(150) ECSS 60 78

Affine(300)

Zhang 2007 M 3 5 1365

Rotation(90) CCN Acu

US(75) CSS 47 75

NUS(400) He & Yung 59 77

Affine(800) MSCP 73 84

He 2008 M 4 2 –

TDR FDR Le

CSS 93 21 1.53

ECSS 92 14 1.33

He & Yung 93 4 0.99

Awrangjeb 2008a A 3 23 8694

Rotation(414) JPEG(460) Ravg Le

US(345) Noise(230) CSS 64 1.36

NUS(2691) ECSS 58 1.38

Affine(3450) ARCSS 66 1.30

Shear(1104)

Awrangjeb 2008b A 3 23 8694

Rotation(414) JPEG(460) Ravg Le

US(345) Noise(230) RJ 52 1.37

NUS(2691) CSS 65 1.36

Affine(3450) ARCSS 66 1.30

Shear(1104) He & Yung 70 1.23

MSCP 71 1.26

CPDA 73 1.18

Zhang 2009 M NA 20 7320

Rotation(320) Noise(200) Acu EI

US(200) CSS 75 40

NUS(2200) Zhang 78 33

Affine(4400)

Awrangjeb 2009 A 3 23 8694

Rotation(414) JPEG(460) Ravg Le Time

US(345) Noise(230) CSS 64 1.36 0.008

NUS(2691) ARCSS 65 1.30 0.016

Affine(3450) He & Yung 69 1.23 0.009

Shear(1104) MSCP 70 1.25 0.006

CPDA 75 1.14 0.013

Fast-CPDA 74 1.15 0.005

Zhang 2010 M 3 20 1940

Rotation(320) Noise(200) Acu Le Time

US(300) GCM 72 1.46 1.075

NUS(600) CSS 66 1.48 1.144

Affine(520) CPDA 67 1.52 1.219

He & Yung 65 1.45 1.051

MSCP 70 1.45 1.138

Eigenvalue 66 1.53 1.502

Eigenvector 56 1.70 1.570

Wavelet 60 1.80 1.139
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TABLE II

DETECTORS IN THE COMPARATIVE STUDY (Lc: CURVE-LENGTH).

Detectors (References)
Smoothing

Curvature
Direct σ, ρ Indirect k, L

RJ [36] σ =3 k = 0.1× Lc Direct

CSS [27] σ =4 – Direct

He & Yung [18] σ =3 k: dynamic Direct

MSCP [45] σ =3,3.5,4 – Direct

ARCSS [5] σ =3,4,5 – Direct

AD [30] σ =1, ρ =1 k = 1 Direct

Eigenvalue [40] σ =3 k = 10 Indirect

CPDA [6] σ =1,2,3 L = 10, 20, 30 Indirect

Zhang [46] σ =2.5,3.75 – Indirect

Fast-CPDA [7] σ =3,4 L = 10, 20, 30 Indirect

GCM [47] σ =3 k = 1 Indirect

TABLE III

RANKING OF DETECTORS UNDER ACCURACY [26] USING THE FIRST DATA SET.

Ranks
Accuracy Localization error

Detectors percentage Detectors pixels

1 CPDA* 91.35 Zhang* 1.13

2 Fast-CPDA* 90.68 MSCP 1.14

3 MSCP 88.45 CPDA* 1.16

4 Zhang* 87.54 He & Yung 1.24

5 CSS 83.58 ARCSS 1.25

6 Eigenvalue* 82.97 CSS 1.26

7 He & Yung 75.28 Fast-CPDA* 1.28

8 GCM* 73.23 GCM* 1.33

9 ARCSS 70.46 Eigenvalue* 1.50

10 AD 48.47 AD 2.05

11 RJ 47.08 RJ 2.06

* indicates detectors using indirect curvatures.
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TABLE IV

RANKING OF DETECTORS UNDER ROBUSTNESS [6] USING THE FIRST DATA SET.

Ranks
Average repeatability Localization error

Detectors percentage Detectors pixels

1 CPDA* 74.74 CPDA* 1.14

2 GCM* 74.18 Fast-CPDA* 1.15

3 Zhang* 74.14 Zhang* 1.20

4 Fast-CPDA* 74.10 He & Yung 1.23

5 Eigenvalue* 73.21 GCM* 1.24

6 MSCP 70.49 MSCP 1.26

7 He & Yung 68.97 ARCSS 1.30

8 ARCSS 65.36 Eigenvalue* 1.30

9 CSS 64.44 CSS 1.36

10 AD 56.60 RJ 1.37

11 RJ 51.76 AD 1.45

* indicates detectors using indirect curvatures.

TABLE V

RANKING OF DETECTORS UNDER ROBUSTNESS [6] USING THE SECOND DATA SET.

Ranks
Average repeatability Localization error

Detectors percentage Detectors pixels

1 Fast-CPDA* 38.33 LoG† 1.47

2 GCM* 38.24 Fast-CPDA* 1.88

3 LoG† 37.81 Harris-Laplace† 1.88

4 CPDA* 37.33 CPDA* 1.98

5 Eigenvalue* 36.33 Zhang* 1.98

6 Zhang* 36.30 MSCP 2.09

7 He & Yung 35.33 GCM* 2.10

8 MSCP 34.98 He & Yung 2.17

9 RJ 34.49 ARCSS 2.19

10 CSS 32.84 RJ 2.19

11 Harris-Laplace† 31.29 Eigenvalue* 2.20

12 AD 28.05 CSS 2.20

13 ARCSS 27.01 AD 2.42

14 SURF† 23.52 SURF† 2.48

* indicates detectors using indirect curvatures.

† indicates interest-point detectors.
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TABLE VI

RANKING OF DETECTORS USING RUNNING TIME (PER IMAGE).

Ranks
Running time

Detectors seconds

1 Fast-CPDA* 0.0048

2 MSCP 0.0056

3 CSS 0.0084

4 He & Yung 0.0090

5 CPDA* 0.0131

6 Zhang* 0.0146

7 ARCSS 0.0156

8 GCM* 0.0252

9 RJ 0.0253

10 Eigenvalue* 0.0444

11 AD 0.1745

* indicates detectors using indirect curvatures.
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