

Project 2.02 | Automated 3D Building Reconstruction from Airborne LiDAR

Project Leader Dr Chunsun Zhang, RMIT University, chunsun.zhang@rmit.edu.au

Project Team Yuxiang He, University of Melbourne, yuxiangh@student.unimelb.edu.au

Project Participants University of Melbourne

Outcomes

AAM, Fugro Spatial Solutions, RPS Group, Sinclair Knight Merz, Ergon Energy

Geoscience Australia, Dept of Environment & Primary Industries (VIC), Dept of Natural Resources & Mines (QLD), Land and Property Information(NSW), Landgate (WA)

Objectives Automated 3D building reconstruction from airborne imagery and LiDAR point clouds for topographic mapping, geo-database updating and change detection

New algorithms and software modules for efficient processing of LiDAR point clouds, with a focus on automated reconstruction of

- 3D building footprints (CityGML LOD 1)
- 3D rooftop models (CityGML LOD 2)

Project Achievements: An innovative approach for automated LiDAR point cloud processing and 3D building model generation

LiDAR point cloud classification

3D building footprints (CityGML LOD1)

3D rooftop modelling (CityGML LOD2)

Summary

- Novel algorithms for robust processing of LiDAR point clouds to automatically generate 3D building models have been developed.
- Software module for 3D building footprint extraction is ready for industrial evaluation and adoption has been implemented.

www.crcsi.com.au