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ABSTRACT:

The performance of automatic building detection techniques can be significantly impeded due to the presence of same-height objects,

for example, trees. Consequently, if a building detection technique cannot distinguish between trees and buildings, both its false positive

and false negative rates rise significantly. This paper presents an improved automatic building detection technique that achieves more

effective separation of buildings from trees. In addition to using traditional cues such as height, width and colour, the proposed improved

detector uses texture information from both LIDAR and orthoimagery. Firstly, image entropy and colour information are jointly applied

to remove easily distinguishable trees. Secondly, a voting procedure based on the neighbourhood information from both the image and

LIDAR data is employed for further exclusion of trees. Finally, a rule-based procedure using the edge orientation histogram from the

image is followed to eliminate false positive candidates. The improved detector has been tested on a number of scenes from three

different test areas and it is shown that the algorithm performs well in complex scenes.

1 INTRODUCTION

Building detection from remotely sensed data has a number of

practical applications including city planning, homeland secu-

rity and disaster management. Consequently, a large number of

building detection techniques have been reported over the last few

decades. Since photogrammetric imagery and LIDAR (LIght De-

tection And Ranging) data have their own merits and demerits,

the recent trend is to integrate data from both of these sources

as a means of advancing building detection by compensating the

disadvantages of one with the advantages of the other.

The success of automatic building detection is still largely im-

peded by scene complexity, incomplete cue extraction and sen-

sor dependency of data (Sohn and Dowman, 2007). Vegetation,

and especially trees, can be the prime cause of scene complex-

ity and incomplete cue extraction. Image quality may vary for

the same scene even if images are captured by the same sen-

sor, but at different times. The situation also becomes complex

in hilly and densely vegetated areas where only a few buildings

are present, these being surrounded by trees. Important building

cues can be completely or partially missed due to occlusions and

shadowing from trees. Therefore, many existing building detec-

tion techniques that depend largely on colour information exhibit

poor detection performance.

Application of a recently developed building detection algorithm

(Awrangjeb et al., 2010a) has shown it to be capable of detecting

buildings in cases where cues are only partially extracted. For

example, if a section of the side of a roof (at least 3m long) is

correctly detected, the algorithm can also detect all or part of the

entire building. However, this detector does not necessarily work

well in complex scenes when buildings are surrounded by dense

vegetation and when they have the same colour as trees, or where

trees are other than green.

This paper presents an improved detection algorithm that uses

both LIDAR and imagery. In addition to exploiting height, width

and colour information, it uses different texture information in

order to differentiate between buildings and trees. Firstly, image

entropy and colour information are employed together to remove

the trees that are easily distinguishable. Secondly, a voting pro-

cedure that considers neighbourhood information is proposed for

the further exclusion of trees. Finally, false positive detections

are eliminated using a rule-based procedure based on the edge

orientation histogram. The improved detector has been tested on

a number of scenes covering three different test areas 1.

2 CUES TO DISTINGUISH TREES AND BUILDINGS

Cues employed to help distinguish trees from buildings include

the following:

• Height: A height threshold (2.5m above ground level) is

often used to remove low vegetation and other objects of

limited height, such as cars and street furniture (Awrangjeb

et al., 2010a). The height difference between first and last

pulse DSMs (digital surface models) have also been used

(Khoshelham et al., 2008).

• Width, area and shape: If the width or area of a detected

object is smaller than a threshold, then it is removed as a tree

(Awrangjeb et al., 2010a). A number of shape attributes can

be found in (Matikainen et al., 2007).

• Surface: A plane-fitting technique has been applied to non-

ground LIDAR points to separate buildings and trees (Zhang

et al., 2006), and a polymorphic feature extraction algorithm

applied to the first derivatives of the DSM in order to esti-

mate the surface roughness has also been employed (Rotten-

steiner et al., 2007).

• Colours: While a high NDVI (normalised difference veg-

etation index estimated using multispectral images) value

represents a vegetation pixel, a low NDVI value indicates

1This paper is a condensed version of (Awrangjeb et al., 2011).
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Figure 1: Flow diagram of the improved building detection tech-

nique.

a non-vegetation pixel. This cue, although frequently used,

has been found unreliable even in normal scenes where trees

and buildings have distinct colours (Awrangjeb et al., 2010a).

K-means clustering was applied on multispectral images to

obtain spectral indices for clusters like trees, water and build-

ings (Vu et al., 2009). Colour invariants have also been used

(Shorter and Kasparis, 2009). A number of other cues gen-

erated from colour image and height data can be found in

(Matikainen et al., 2007, Salah et al., 2009).

• Texture: When objects have similar spectral responses, the

grey level co-occurrence matrix (GLCM) can be estimated

from the image to quantify the co-occurrence probability

(Chen et al., 2006). Some GLCM indices, eg mean, stan-

dard deviation, entropy and homogeneity, have been applied

to both height and image data in order to classify buildings

and trees (Salah et al., 2009, Matikainen et al., 2007).

• Training pixels: Training pixels of different colours from

roofs, roads, water, grass, trees and soil have been used for

classification (Lee et al., 2003).

• Filtering: Morphological opening filters have been employed

to remove trees attached to buildings (Yong and Huayi, 2008).

• Others: Segmentation of LIDAR intensity data can also

be used to distinguish between buildings and trees (Maas,

2001). The density of raw LIDAR data has also been em-

ployed (Demir et al., 2009).

3 IMPROVED BUILDING DETECTION

The proposed improved detector employs a combination of height,

width, angle, colour and texture information with the aim of more

comprehensively separating buildings from trees. Although cues

other than texture were used in the earlier version of the detector,

the improved formulation makes use of additional texture cues

such as entropy and the edge orientation histogram at four stages

of the process, as shown in Fig. 1. Different steps of the detection

algorithm have been presented in (Awrangjeb et al., 2010a). This

paper focuses on how texture, dimensional and colour informa-

tion can be applied jointly in order to better distinguish between

buildings from trees. The setup of different threshold values are

discussed in (Awrangjeb et al., 2011).

Figure 2: (a) Image of a test scene, (b) corresponding LIDAR

data (in gray-scale), (c) primary mask and (d) secondary mask.

Figure 3: Detection of green buildings: (a) the NDVI informa-

tion alone missed green buildings whereas (b) combined NDVI

and entropy information detects green buildings. ‘Blue’ lines are

accepted, ‘red’ represents rejected.

3.1 Application of Height Threshold

A height threshold Th = Hg + 2.5m, where Hg represents the

ground height, is applied to the raw LIDAR data and two build-

ing masks are created – the primary Mp and secondary Ms masks

(Awrangjeb et al., 2010a). This threshold removes low height ob-

jects (grounds, grass, roads, cars etc.) and preserves non-ground

points (trees and buildings). The corresponding DEM height for

a given LIDAR point is used as the ground height. If there is no

corresponding DEM height for a given LIDAR point, the average

DEM height in the neighbourhood is used. Fig. 2 shows the two

extracted masks for a scene.

3.2 Use of Width, NDVI and Entropy

The black areas in Mp are either buildings, trees or other ele-

vated objects. Line segments around these black shapes in Mp

are formed, and in order to avoid detected tree-edges, extracted

lines shorter than the minimum building width Lmin = 3m are

removed. Trees having small horizontal area are thus removed.

The mean of the NDVI value is then applied, as described in

(Awrangjeb et al., 2010a), to eliminate trees having large horizon-

tal area. However, the NDVI has been found to be an unreliable

cue even in normal scenes where trees and buildings have dis-

tinct colours (Rottensteiner et al., 2007, Awrangjeb et al., 2010a).

In addition, it cannot differentiate between trees and green build-

ings. Fig. 3(a) shows an example where a green building B1

cannot be detected at all since all lines around it are rejected.

However, green building B2 can be partially detected because it

has a white coloured roof section. In some areas there may be

non-green buildings having the same colour as trees, especially

when leaves change colour in different seasons. In such cases,

the removal of trees based on the NDVI will result in many build-

ings also being removed. Detection of these same buildings will

likely also lead to detection of trees.

If the mean NDVI is above the NDVI threshold at any side of

a line segment, a further test is performed before removing this
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Figure 4: Use of neighbourhood information to remove tree-

edges: (a) before voting: ‘blue’ represents lines from the pri-

mary mask after the extending procedure and ‘green’ represents

lines from the image and (b) after voting: ‘cyan’ represents ac-

cepted lines after the voting procedure and ‘red’ represents re-

jected lines.

line segment as a tree-edge. This test checks whether the aver-

age entropy is more than the entropy threshold Tent = 30%. If

the test holds, the line segment is removed as a tree edge, other-

wise it is selected as a building edge. Fig. 3(b) shows that the

green buildings B1 and B2 can be fully detected using this ap-

proach. In addition, some of the trees subject to shadowing and

self-occlusion are also detected.

3.3 Voting on the Neighbourhood Information

The joint application of NDVI and entropy can remove some

large trees; however, in the case when there are shadows and

self-occlusions within trees, difficulties with the approach can be

expected. Therefore, for each of the extended lines a voting pro-

cedure based on the information within the neighbourhood of that

line is followed.

All the extracted and extended lines that reside around the same

black shape in the primary mask Mp fall into the same neigh-

bourhood. Let Ω = {li}, 0 ≤ i ≤ nt be such a neighbourhood

obtained after the application of the width threshold Lmin in the

previous section, where li indicates an extracted line, its length

Lli ≥ 3m, and there are a total of nt extracted lines. Further-

more, let ne lines, out of nt extracted lines in Ω, survive after the

extending procedure discussed above, with the average length of

these being LΩ,avg . We also consider the longest image line, ex-

tracted from the grey-scale orthoimage, which resides around li.

The longest local image line `i for li within a rectangular area of

width 3m around li is obtained. Let the length of `i be L`i . In

some cases, no `i may be found due to poor image contrast or if

li is a tree edge. Fig. 4(a) shows the extended lines from Mp and

the accepted lines from the orthoimage.

For each line li in the proposed voting procedure, four votes vk,

0.0 ≤ vk ≤ 1.0 are cast by exploiting its neighbourhood infor-

mation as follows:

• v1 = 1.0, if Lli ≥ LΩ,avg; else v1 =
LΩ,avg−Lli

LΩ,avg
.

• v2 = Θ−θi
Θ

, where θi is the adjustment angle between li and

the longest line in Ω, which was used as the base line in

the adjustment procedure, and Θ = π
8

is the angle threshold

used in the adjustment procedure (Awrangjeb et al., 2010a).

• v3 = ne

nt
. This is based on the observation that line seg-

ments around a building are more likely to be adjusted, which

Figure 5: A complex scene: (a) primary mask, (b) detected can-

didate buildings with a large number of false detections and (c)

detected final buildings after removing false positives.

means that they are either parallel or perpendicular to the

base line around the same black shape in Mp.

• v4 = 1.0 if L`i ≥ 2Lmin; else v4 =
L`i

−Lmin

Lmin
. If there is

no image line found around li, then v4 = 0.0.

The voting procedure is executed for ne lines in Ω. A line li
is designated a building edge if it obtains a majority vote. This

means that the mean of vk, 1 ≤ k ≤ 4, is greater than 0.50. Fig.

4(b) shows that the majority of tree edges can be removed by ap-

plying the voting procedure. A candidate building set is then ob-

tained using the extended lines that survive the voting procedure

(Awrangjeb et al., 2010a).

In areas with dense vegetation, the black shapes of buildings and

nearby trees are not separable and consequently a building may

be connected with another building a few metres away (see Fig.

5). If the connected buildings are not parallel to each other, then

the improved adjustment procedure will likely still fail. This is

why in the improved detection algorithm, the adjustment and vot-

ing procedure is available as an optional step, the choice of which

will depend upon vegetation density. In either case, there may

be some false buildings present in the candidate building set, as

shown in Fig. 5(b). A procedure utilising the edge orientation

histogram from the orthoimage is then applied in order to remove

false positives.

3.4 Application of Edge Orientation Histogram

Following the detection of candidate buildings, a gradient his-

togram is formed using the edge points within each candidate

building rectangle. Edges are first extracted from the orthophoto

using an edge detector and short edges (less than 3m in length) are

removed. Each edge is then smoothed and the gradient (tangent

angle) is calculated on each point using the first order derivatives.

The gradient will be in the range [−90◦,+90◦]. A histogram

with a successive bin distance of Dbin = 5◦ is formed using the

gradient values of all edge points lying inside the candidate rect-

angle.

Rectangles containing the whole or major part of a building should

have one or more significant peaks in the histogram, since edges

detected on building roofs are formed from straight line segments.

All points on an apparent straight line segment will have a similar

gradient value and hence will be assigned to the same histogram

bin, resulting in a significant peak. A significant peak means the

corresponding bin height is well above the mean bin height of the

histogram. Since edge points whose gradient falls into the first (at

−90◦ to−85◦) and last (at 85◦ to 90◦) bins have almost the same

orientation, located peaks in these two bins are added to form a

single peak.

Fig. 6 illustrates three gradient histogram functions and mean

heights for candidate buildings B1, B2 and B3 in Fig. 5(b). Two

bins at ±90◦ basically form one bin, because lines in these two
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Figure 6: Gradient histogram functions and means for rectangles

(a) B1, (b) B2 and (c) B3 in Fig. 5(b): x-axis is in degrees and

y-axis is in pixels (bin heights).

bins are perpendicular to the x-axis and reside above & below

this axis. Therefore, these can be a peak at either of these bins

and their heights can be accumulated to form a single peak. Fig.

6(a) shows that B1 has two significant peaks: 80 pixels at 0◦ and

117 (55 + 62) pixels at ±90◦, these being well above the mean

height of 28.6 pixels. The two significant peaks separated by 90◦

strongly suggest that this is a building. From Fig. 6(b) it can

be seen that B2 has one significant peak at ±90◦ but a number

of insignificant peaks. This points to B2 being partly building

but mostly vegetation, which is also supported by the high mean

height value. With the absence of any significant peak, but a num-

ber of insignificant peaks close to the mean height, Fig. 6(c) in-

dicates that B3 is comprised of vegetation. Although there may

be some significant peaks in heavily vegetated areas, a high aver-

age height of bins between two significant peaks can be expected.

Note that the orthophoto resolution in this case was 10cm, so a

bin height of 80 pixels indicates a total length of 8m from the

contributing edges.

The observations above support the theoretical inferences. In

practice, however, detected vegetation clusters can show the edge

characteristics of a building, and a small building having a flat

roof may not have enough edges to show the required peak prop-

erties. As a result, some true buildings can be missed, while some

false buildings may be detected. A number of precautions can be

formulated in order to minimize the occurrence of false detec-

tions.

Two types of histograms are formed using edges within each de-

tected rectangle. In the first type, one histogram considers all the

edges collectively, and in the second type histograms for indi-

vidual edges whose length is at least Lmin are formed. Let the

collective histogram be symbolized as Hcol, with an individual

histogram being indicated by Hind. Tests on Hcol and Hind can

be carried out to identify true buildings and remove trees. If a

detected rectangle passes at least one of the following tests it is

selected as a building, otherwise it is removed as vegetation.

1. Test 1: Hcol has at least two peaks with heights of at least

3Lmin and the average height of bins between those peaks

is less than 2Lmin. This test ensures the selection of a large

building, where at least two of its long perpendicular sides

are detected. It also removes vegetation where the average

height of bins between peaks is high.

2. Test 2: The highest bin in Hcol is at least 3Lmin in height

and the aggregated height of all bins in Hcol is at most 90m.

This test ensures the selection of a large building where at

least one of its long sides is detected. It also removes vege-

tation where the aggregated height of all bins is high.

3. Test 3: Hcol has at least two peaks with heights of at least

2Lmin, and the highest bin to mean height ratio RMm1 is

at least 3. This test ensures the selection of a medium size

building, where at least two of its perpendicular sides are

detected. It also removes vegetation where the highest bin

to mean height ratio is low.

4. Test 4: The highest bin in Hcol has a height of at least Lmin

and the highest bin to mean height ratio RMm2 is at least

4. This test ensures the selection of a small or medium size

building where at least one of its sides is at least partially

detected. It also removes small to moderate sized vegetation

areas where the highest bin to mean height ratio is low.

5. Test 5: The highest bin in Hind has a height of at least Lmin

and the aggregated height of all bins in Hcol is at most 90m.

This test ensures the selection of buildings which are oc-

cluded on at most three sides.

6. Test 6: The ratio RaTp of the detected rectangular area to

the number of texture pixels (NTp, the aggregated height of

all bins in Hcol) is at least 45. This test ensures the selection

of all buildings which are at least partially detected but the

roof sides are missed.

The application of these tests on the complex scene in Fig. 5(b)

produces the result shown in Fig. 5(c). Note that for simple

scenes with small amounts of vegetation, the NDVI and entropy

together can successfully remove most trees so subsequent ap-

plication of the voting procedure and edge orientation histogram

can be considered as optional, leading to a saving of computation

time.

4 RESULTS AND DISCUSSIONS

The threshold-free evaluation system involved in the performance

study conducted makes one-to-one correspondences using near-

est centre distances between detected and reference buildings.

The descriptor ‘threshold-free’ means the evaluation system does

not involve any thresholds based on human choice. Some 15 eval-

uation indices in three categories, namely object-based, pixel-

based and geometric, have been employed. Whereas pixel-based

evaluation considers only spectral properties in the imagery, object-

based evaluation takes into account spatial and contextual proper-

ties in both the imagery and LIDAR data. The root mean square

positional discrepancy value (RMSE) is employed to quantify the

geometric accuracy. The detailed procedure of the threshold-

free evaluation system and the evaluation indices can be found

in (Awrangjeb et al., 2010b).

The test data sets employed cover three suburban areas in Aus-

tralia, Fairfield, NSW; Moonee Ponds, Victoria and Knox, Victo-

ria. The Fairfield data set covers an area of 588m × 417m and

contains 370 buildings, Moonee Ponds covers 447m× 447m and
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has 250 buildings and Knox covers 400m × 400m and contains

130 buildings. Fairfield contains many large industrial buildings

and in Mooney Ponds there were some green buildings. Knox

can be characterized as outer suburban with lower housing den-

sity and extensive tree coverage that partially covers buildings. In

terms of topography, Fairfield and Mooney Ponds are relatively

flat while Knox is quite hilly.

LIDAR coverage comprised last-pulse returns with a point spac-

ing of 0.5m for Fairfield, and first-pulse returns with a point spac-

ing of 1m for Moonee Ponds and Knox. For Fairfield and Knox,

RGB colour orthoimagery was available, with resolutions of 0.15m

and 0.1m, respectively. Moonee Ponds image data comprised

RGBI colour orthoimagery with a resolution of 0.1m. Bare-earth

DEMs of 1m horizontal resolution covered all three areas.

Reference data sets were created by monoscopic image measure-

ment using the Barista software 2. All rectangular structures, rec-

ognizable as buildings and above the height threshold Th, were

digitized. The reference data included garden sheds, garages, etc.

These were sometimes as small as 10m2 in area.

Tables 1 to 3 show results of the object-based, pixel-based and ge-

ometric accuracy evaluations of the improved building detection

algorithm in the three test areas. A visual illustration of sample

building detection results are shown in Fig. 7. The improved

algorithm produced moderately better performance than the orig-

inal in all three evaluation categories within both Fairfield and

Mooney Ponds. The better performance was mainly due to proper

detection of large industrial buildings in Fairfield, detection of

some green buildings in Mooney Ponds, and elimination of trees

in both Fairfield and Mooney Ponds.

In Knox, the improved algorithm exhibited significantly better

performance over the original, due to two main reasons. Firstly,

the improved algorithm better accommodated the dense tree cover

and randomly oriented buildings that characterized the Knox data.

Fairfield and Mooney Ponds on the other hand are low in vege-

tation cover and buildings are generally well separated and more

or less parallel or perpendicular to each other. Secondly, the im-

proved algorithm showed its merits in better handling varying to-

pography. Knox is a hilly area (maximum height HM = 270m

and minimum height Hm = 110m), whereas Fairfield (HM = 23m

and Hm = 1m) and Mooney Ponds (HM = 43m and Hm = 23m)

are moderately flat.

The original algorithm detected a large number of false buildings

in Knox, as illustrated in Figs. 7 (a) and (c). Moreover, many

buildings detected with the original algorithm were not properly

aligned. Consequently, in object-based evaluation, 56% qual-

ity was observed with 77% completeness and 67% correctness.

The reference cross-lap rate was above 85%, with 39% detection

overlap rate. In pixel-based evaluation, 27% quality was found

with 44% completeness and 42% correctness. The area omission

error was more than 50% and both branching and miss factors

were above 120%. The geometric accuracy was no better than 33

pixels.

In contrast, as shown for Knox in Figs. 7 (b) and (d), the im-

proved detector removed a large number of false buildings using

its orientation histogram. In object-based evaluation, when com-

pared to the original algorithm, the quality increased to 82%, a

26% rise. The detection overlap rate decreased to 13% and the

reference cross-lap rate reduced to 62%. In pixel-based evalu-

ation, again when compared to the original algorithm, the qual-

ity went up to 39%, a 12% growth, while the branching factor

2The Barista Software, www.baristasoftware.com.au, May 2011.

Table 1: Object-based evaluation results in percentages (Cm =

completeness, Cr = correctness, Ql = quality, Md = multiple de-

tection rate, Do = Detection overlap rate, Crd = detection cross-

lap rate and Crr = reference cross-lap rate).

Scenes Cm Cr Ql Md Do Crd Crr

Fairfield 95.1 95.4 92.2 2.7 8.6 3.5 9.7

MPonds 94.5 95.3 89.2 6.2 13.1 7.3 17.5

Knox 93.2 87.2 82.0 9.3 12.8 23.3 61.6

Average 94.0 91.3 86.4 6.9 11.9 14.4 37.6

Table 2: Pixel-based evaluation results in percentages (Cmp =

completeness, Crp = correctness, Qlp = quality, Aoe = area omis-

sion error, Ace = area commission error, Bf = branching factor

and Mf = miss factor).

Scenes Cmp Crp Qlp Aoe Ace Bf Mf

Fairfield 83.2 84.5 72.4 15.3 12.5 13.5 20.3

MPonds 87.2 85.4 75.3 12.7 13.2 16.7 17.3

Knox 49.0 65.9 39.1 51.0 30.9 51.8 104.0

Average 73.1 78.6 62.3 26.3 18.9 27.3 47.2

declined dramatically to 52% and the miss factor was also mod-

erately improved to 104%. Geometric accuracy improved to 20

pixels, or by approximately 50%.

In object-based evaluation, the improved algorithm offered on av-

erage across the three data sets a more than 10% increase in com-

pleteness and correctness and a 15% increase in quality. Multiple

detection and detection overlap rates were also low. In pixel-

based evaluation, there was also a reasonable rise in complete-

ness (4%), correctness (10%) and quality (7%). Area omission

and commission errors were less than those obtained with the

original algorithm. In addition, there was a 5 pixel improvement

in geometric accuracy.

5 CONCLUSIONS

This paper has presented an improved automatic building de-

tection technique that exhibits better performance in separating

buildings from trees. In addition to employing height and width

thresholds and colour information, it uses texture information

from both LIDAR and colour orthoimagery. The joint appli-

cation of measures of entropy and NDVI helps in the removal

of vegetation by making trees more easily distinguishable. The

voting procedure incorporates neighbourhood information from

the image and LIDAR data for further removal of trees. Finally,

a rule-based procedure based on the edge orientation histogram

from the image edges assists in eliminating false positive build-

ing candidates. The experimental results reported showed that

while the improved algorithm offered moderately enhanced per-

formance in Fairfield and Mooney Ponds, it yielded a very signif-

icant improvement in performance in Knox across all three eval-

uation categories.
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